메뉴 건너뛰기




Volumn 64, Issue , 2014, Pages 81-93

A new cluster validity measure based on general type-2 fuzzy sets: Application in gene expression data clustering

Author keywords

Cluster validity index; Gene expression clustering; General type 2 fuzzy c means; General type 2 fuzzy sets; Similarity measure

Indexed keywords

CLUSTERING ALGORITHMS; FUZZY SYSTEMS; GENE EXPRESSION; PATTERN RECOGNITION;

EID: 84901232103     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2014.03.023     Document Type: Article
Times cited : (35)

References (50)
  • 1
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large b-cell lymphomas identified by gene expression profiling
    • A.A. Alizadeh, M.B. Eisen, R. Davis, C. Ma, I. Lossos, and A. Rosenwald et al. Distinct types of diffuse large b-cell lymphomas identified by gene expression profiling Nature 403 6769 2000 503 511
    • (2000) Nature , vol.403 , Issue.6769 , pp. 503-511
    • Alizadeh, A.A.1    Eisen, M.B.2    Davis, R.3    Ma, C.4    Lossos, I.5    Rosenwald, A.6
  • 3
    • 0034659898 scopus 로고    scopus 로고
    • Genomics gene expression and DNA arrays
    • D. Lockhart, and E. Winzeler Genomics gene expression and DNA arrays Nature 405 67688 2000 827 836
    • (2000) Nature , vol.405 , Issue.6768 , pp. 827-836
    • Lockhart, D.1    Winzeler, E.2
  • 6
    • 73449097843 scopus 로고    scopus 로고
    • Simulated annealing based automatic clustering combined with ANN classification for analyzing microarray data
    • U. Maulik, and A. Mukhopadhyay Simulated annealing based automatic clustering combined with ANN classification for analyzing microarray data Comput. Oper. Res. 37 2010 1369 1380
    • (2010) Comput. Oper. Res. , vol.37 , pp. 1369-1380
    • Maulik, U.1    Mukhopadhyay, A.2
  • 7
    • 84885748830 scopus 로고    scopus 로고
    • Gene expression data clustering using a multiobjective symmetry based clustering technique
    • doi
    • S. Saha, A. Ekbal, K. Gupta, S. Bandyopadhyay, Gene expression data clustering using a multiobjective symmetry based clustering technique, Comput. Biol. Med. doi: http://dx.doi.org/10.1016/j.compbiomed.2013.07.021.
    • Comput. Biol. Med.
    • Saha, S.1    Ekbal, A.2    Gupta, K.3    Bandyopadhyay, S.4
  • 9
    • 17944394324 scopus 로고    scopus 로고
    • Fuzzy c-means method for clustering microarray data
    • D. Dembele, and P. Kastner Fuzzy c-means method for clustering microarray data Bioinformatics 19 8 2003 973 980
    • (2003) Bioinformatics , vol.19 , Issue.8 , pp. 973-980
    • Dembele, D.1    Kastner, P.2
  • 10
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation
    • P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, and E. Dmitrovsky et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation Proc. Natl. Acad. Sci. USA 96 1999 2907 2912
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 2907-2912
    • Tamayo, P.1    Slonim, D.2    Mesirov, J.3    Zhu, Q.4    Kitareewan, S.5    Dmitrovsky, E.6
  • 11
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • U. Alon, N. Barkai, and D.A. Notterman et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays Proc. Natl. Acad. Sci. USA 96 1999 6745 6750
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3
  • 12
    • 0035014159 scopus 로고    scopus 로고
    • Analysis of temporal gene expression profiles: Clustering by simulated annealing and determining the optimal number of clusters
    • A.V. Lukashin, and R. Fuchs Analysis of temporal gene expression profiles: clustering by simulated annealing and determining the optimal number of clusters Bioinformatics 17 5 2001 405 414
    • (2001) Bioinformatics , vol.17 , Issue.5 , pp. 405-414
    • Lukashin, A.V.1    Fuchs, R.2
  • 13
    • 0033715579 scopus 로고    scopus 로고
    • Genetic algorithm based clustering technique
    • U. Maulik, and S. Bandyopadhyay Genetic algorithm based clustering technique Pattern Recogn. 33 2000 1455 1465
    • (2000) Pattern Recogn. , vol.33 , pp. 1455-1465
    • Maulik, U.1    Bandyopadhyay, S.2
  • 14
    • 36448965202 scopus 로고    scopus 로고
    • An improved algorithm for clustering gene expression data
    • S. Bandyopadhyay, A. Mukhopadhyay, and U. Maulik An improved algorithm for clustering gene expression data Bioinformatics 23 21 2007 2859 2865
    • (2007) Bioinformatics , vol.23 , Issue.21 , pp. 2859-2865
    • Bandyopadhyay, S.1    Mukhopadhyay, A.2    Maulik, U.3
  • 16
    • 33947430572 scopus 로고    scopus 로고
    • Uncertain fuzzy clustering: Interval type-2 fuzzy approach to c-means
    • C. Hwang, and F. Rhee Uncertain fuzzy clustering: interval type-2 fuzzy approach to c-means IEEE Trans. Fuzzy Syst. 15 1 2007 107 120
    • (2007) IEEE Trans. Fuzzy Syst. , vol.15 , Issue.1 , pp. 107-120
    • Hwang, C.1    Rhee, F.2
  • 17
    • 84867381731 scopus 로고    scopus 로고
    • General type-2 fuzzy c-means algorithm for uncertain fuzzy clustering
    • O. Linda, and M. Manic General type-2 fuzzy c-means algorithm for uncertain fuzzy clustering IEEE Trans. Fuzzy Syst. 20 5 2013 883 897
    • (2013) IEEE Trans. Fuzzy Syst. , vol.20 , Issue.5 , pp. 883-897
    • Linda, O.1    Manic, M.2
  • 18
    • 39749103791 scopus 로고    scopus 로고
    • An efficient centroid type-reduction strategy for general type-2 fuzzy logic system
    • F. Liu An efficient centroid type-reduction strategy for general type-2 fuzzy logic system Inf. Sci. 178 2008 2224 2236
    • (2008) Inf. Sci. , vol.178 , pp. 2224-2236
    • Liu, F.1
  • 19
    • 0015644823 scopus 로고
    • Cluster validity with fuzzy sets
    • J.C. Bezdek Cluster validity with fuzzy sets Cybernet. Syst. 3 3 1973 58 73
    • (1973) Cybernet. Syst. , vol.3 , Issue.3 , pp. 58-73
    • Bezdek, J.C.1
  • 20
    • 36148971216 scopus 로고    scopus 로고
    • Validation criteria for enhanced fuzzy clustering
    • A. Celikyilmaz, and I.B. Turksen Validation criteria for enhanced fuzzy clustering Pattern Recogn. Lett. 29 2008 97 108
    • (2008) Pattern Recogn. Lett. , vol.29 , pp. 97-108
    • Celikyilmaz, A.1    Turksen, I.B.2
  • 22
    • 0001404416 scopus 로고
    • A new method of choosing the number of clusters for fuzzy c-means method
    • Y. Fukuyama, M. Sugeno, A new method of choosing the number of clusters for fuzzy c-means method, in: Proceedings of 5th Symposium on Fuzzy Systems, 1989, pp. 247-250.
    • (1989) Proceedings of 5th Symposium on Fuzzy Systems , pp. 247-250
    • Fukuyama, Y.1    Sugeno, M.2
  • 23
    • 9544250381 scopus 로고    scopus 로고
    • A cluster validation index for GK cluster analysis based on a relative degree of sharing
    • Y. Kim, D. Kim, D. Lee, and K.H. Lee A cluster validation index for GK cluster analysis based on a relative degree of sharing Inf. Sci. 168 2004 225 242
    • (2004) Inf. Sci. , vol.168 , pp. 225-242
    • Kim, Y.1    Kim, D.2    Lee, D.3    Lee, K.H.4
  • 24
    • 25844500444 scopus 로고    scopus 로고
    • New indices for cluster validity assessment
    • M. Kim, and R.S. Ramakrishna New indices for cluster validity assessment Pattern Recogn. Lett. 26 2005 2353 2363
    • (2005) Pattern Recogn. Lett. , vol.26 , pp. 2353-2363
    • Kim, M.1    Ramakrishna, R.S.2
  • 25
    • 0029360028 scopus 로고
    • On cluster validity for fuzzy c-means model
    • N.K. Pal, and J.C. Bezdek On cluster validity for fuzzy c-means model IEEE Trans. Fuzzy Syst. 3 3 1995 370 379
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.3 , pp. 370-379
    • Pal, N.K.1    Bezdek, J.C.2
  • 27
    • 59149086825 scopus 로고    scopus 로고
    • A comparative study of ranking methods, similarity measures, and uncertainty measures for interval type-2 fuzzy sets
    • D. Wu, and J.M. Mendel A comparative study of ranking methods, similarity measures, and uncertainty measures for interval type-2 fuzzy sets Inf. Sci. 179 2009 1169 1192
    • (2009) Inf. Sci. , vol.179 , pp. 1169-1192
    • Wu, D.1    Mendel, J.M.2
  • 28
    • 80055031429 scopus 로고    scopus 로고
    • MiniMax ε-stable cluster validity index for type-2 fuzziness
    • I. Ozkan, and I.B. Turksen MiniMax ε-stable cluster validity index for type-2 fuzziness Inf. Sci. 84 2012 64 74
    • (2012) Inf. Sci. , vol.84 , pp. 64-74
    • Ozkan, I.1    Turksen, I.B.2
  • 29
    • 84897579805 scopus 로고    scopus 로고
    • A new approach to similarity and inclusion measures between general type-2 fuzzy sets
    • 10.1007/s00500-013-1101-z
    • T. Zhao, J. Xiao, Y.X. Li, and X.S. Deng A new approach to similarity and inclusion measures between general type-2 fuzzy sets Soft Comput. 2013 10.1007/s00500-013-1101-z
    • (2013) Soft Comput.
    • Zhao, T.1    Xiao, J.2    Li, Y.X.3    Deng, X.S.4
  • 31
  • 32
    • 84867357760 scopus 로고    scopus 로고
    • Monotone centroid flow algorithm for type reduction of general type-2 fuzzy sets
    • O. Linda, and M. Manic Monotone centroid flow algorithm for type reduction of general type-2 fuzzy sets IEEE Trans. Fuzzy Syst. 20 5 2012 805 819
    • (2012) IEEE Trans. Fuzzy Syst. , vol.20 , Issue.5 , pp. 805-819
    • Linda, O.1    Manic, M.2
  • 33
    • 79958014397 scopus 로고    scopus 로고
    • Computing the centroid of a general type-2 fuzzy set by means of the centroid-flow algorithm
    • D. Zhai, and J.M. Mendel Computing the centroid of a general type-2 fuzzy set by means of the centroid-flow algorithm IEEE Trans. Fuzzy Syst. 19 3 2011 401 422
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.3 , pp. 401-422
    • Zhai, D.1    Mendel, J.M.2
  • 34
    • 0242689393 scopus 로고    scopus 로고
    • On fuzzy-valued fuzzy reasoning
    • Q. Chen, and S. Kawase On fuzzy-valued fuzzy reasoning Fuzzy Sets Syst. 113 2000 237 251
    • (2000) Fuzzy Sets Syst. , vol.113 , pp. 237-251
    • Chen, Q.1    Kawase, S.2
  • 36
    • 70350064580 scopus 로고    scopus 로고
    • α-Plane representation for type-2 fuzzy sets: Theory and application
    • J.M. Mendel, F. Liu, and D. Zhai α-Plane representation for type-2 fuzzy sets: theory and application IEEE Trans. Fuzzy Syst. 17 5 2009 1189 1207
    • (2009) IEEE Trans. Fuzzy Syst. , vol.17 , Issue.5 , pp. 1189-1207
    • Mendel, J.M.1    Liu, F.2    Zhai, D.3
  • 37
    • 34548605210 scopus 로고    scopus 로고
    • Uncertainty measures for interval type-2 fuzzy sets
    • D.R. Wu, and J.M. Mendel Uncertainty measures for interval type-2 fuzzy sets Inf. Sci. 177 23 2007 5378 5393
    • (2007) Inf. Sci. , vol.177 , Issue.23 , pp. 5378-5393
    • Wu, D.R.1    Mendel, J.M.2
  • 38
    • 33646194382 scopus 로고    scopus 로고
    • Relationship between similarity measure and entropy of interval valued fuzzy sets
    • W.Y. Zeng, and H.X. Li Relationship between similarity measure and entropy of interval valued fuzzy sets Fuzzy Sets Syst. 157 11 2006 1477 1484
    • (2006) Fuzzy Sets Syst. , vol.157 , Issue.11 , pp. 1477-1484
    • Zeng, W.Y.1    Li, H.X.2
  • 39
    • 37249084329 scopus 로고    scopus 로고
    • Normalized distance, similarity measure, inclusion measure and entropy of interval-valued fuzzy sets and their relationship
    • W.Y. Zeng, and P. Guo Normalized distance, similarity measure, inclusion measure and entropy of interval-valued fuzzy sets and their relationship Inf. Sci. 178 5 2008 1334 1342
    • (2008) Inf. Sci. , vol.178 , Issue.5 , pp. 1334-1342
    • Zeng, W.Y.1    Guo, P.2
  • 40
    • 67650476336 scopus 로고    scopus 로고
    • Entropy of interval-valued fuzzy sets based on distance and its relationship with similarity measure
    • H.Y. Zhang, W.X. Zhang, and C.L. Mei Entropy of interval-valued fuzzy sets based on distance and its relationship with similarity measure Knowl.-Based Syst. 22 6 2009 449 454
    • (2009) Knowl.-Based Syst. , vol.22 , Issue.6 , pp. 449-454
    • Zhang, H.Y.1    Zhang, W.X.2    Mei, C.L.3
  • 41
    • 13244265796 scopus 로고    scopus 로고
    • Pattern recognition using type-II fuzzy sets
    • H.B. Mitchell Pattern recognition using type-II fuzzy sets Inf. Sci. 170 2 2005 409 418
    • (2005) Inf. Sci. , vol.170 , Issue.2 , pp. 409-418
    • Mitchell, H.B.1
  • 42
    • 60349106805 scopus 로고    scopus 로고
    • On similarity and inclusion measures between type-2 fuzzy sets with an application to clustering
    • M.S. Yang, and D.C. Lin On similarity and inclusion measures between type-2 fuzzy sets with an application to clustering Comput. Math. Appl. 57 2009 896 907
    • (2009) Comput. Math. Appl. , vol.57 , pp. 896-907
    • Yang, M.S.1    Lin, D.C.2
  • 43
    • 79951955239 scopus 로고    scopus 로고
    • Similarity, inclusion and entropy measures between type-2 fuzzy sets based on the Sugeno integral
    • C.M. Hwang, M.S. Yang, W.L. Hung, and E.S. Lee Similarity, inclusion and entropy measures between type-2 fuzzy sets based on the Sugeno integral Math. Comput. Model. 53 2011 1788 1797
    • (2011) Math. Comput. Model. , vol.53 , pp. 1788-1797
    • Hwang, C.M.1    Yang, M.S.2    Hung, W.L.3    Lee, E.S.4
  • 44
    • 0032178397 scopus 로고    scopus 로고
    • Cluster validity index for fuzzy clustering
    • S.H. Kwon Cluster validity index for fuzzy clustering Electron. Lett. 34 22 1998 2176 2177
    • (1998) Electron. Lett. , vol.34 , Issue.22 , pp. 2176-2177
    • Kwon, S.H.1
  • 45
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis J. Comput. Appl. Math. 20 1 1987 53 65
    • (1987) J. Comput. Appl. Math. , vol.20 , Issue.1 , pp. 53-65
    • Rousseeuw, P.1
  • 47
    • 33747830882 scopus 로고    scopus 로고
    • Clustering microarray gene expression data using weighted Chinese restaurant process
    • Z.S. Qin Clustering microarray gene expression data using weighted Chinese restaurant process Bioinformatics 22 16 2006 1988 1997
    • (2006) Bioinformatics , vol.22 , Issue.16 , pp. 1988-1997
    • Qin, Z.S.1
  • 48
    • 84866484337 scopus 로고    scopus 로고
    • Hybrid method for the analysis of time series gene expression data
    • L. Han, and H. Yan Hybrid method for the analysis of time series gene expression data Knowl.-Based Syst. 35 2012 14 20
    • (2012) Knowl.-Based Syst. , vol.35 , pp. 14-20
    • Han, L.1    Yan, H.2
  • 49
    • 84870061139 scopus 로고    scopus 로고
    • Wavelet feature extraction and genetic algorithm for biomarker detection in colorectal cancer data
    • Y. Liu, U. Aickelin, J. Feyereisl, and L.G. Durrant Wavelet feature extraction and genetic algorithm for biomarker detection in colorectal cancer data Knowl.-Based Syst. 37 2013 502 514
    • (2013) Knowl.-Based Syst. , vol.37 , pp. 502-514
    • Liu, Y.1    Aickelin, U.2    Feyereisl, J.3    Durrant, L.G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.