메뉴 건너뛰기




Volumn 49, Issue , 2014, Pages 32-44

Robust gene signatures from microarray data using genetic algorithms enriched with biological pathway keywords

Author keywords

Biological enrichment; DNA analysis; Evolutionary algorithms; Feature selection

Indexed keywords

ALGORITHMS; BIOINFORMATICS; DISEASES; EVOLUTIONARY ALGORITHMS; FEATURE EXTRACTION; GENES; GENETIC ALGORITHMS; MICROARRAYS;

EID: 84902475518     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2014.01.006     Document Type: Article
Times cited : (24)

References (50)
  • 1
    • 84878537900 scopus 로고    scopus 로고
    • Analysis of differentially expressed genes in ductal carcinoma with DNA microarray
    • Zhang B.-H., Liu J., Zhou Q.-X., Zuo D., Wang Y. Analysis of differentially expressed genes in ductal carcinoma with DNA microarray. Eur Rev Med Pharmacol Sci 2013, 17(6):758-766.
    • (2013) Eur Rev Med Pharmacol Sci , vol.17 , Issue.6 , pp. 758-766
    • Zhang, B.-H.1    Liu, J.2    Zhou, Q.-X.3    Zuo, D.4    Wang, Y.5
  • 2
    • 84879015632 scopus 로고    scopus 로고
    • Batch effects and pathway analysis: two potential perils in cancer studies involving DNA Methylation array analysis
    • Harper K.N., Peters B., Gamble M.V. Batch effects and pathway analysis: two potential perils in cancer studies involving DNA Methylation array analysis. Cancer Epidemiol Biomarkers Prevent 2013, 22(6):1052-1060.
    • (2013) Cancer Epidemiol Biomarkers Prevent , vol.22 , Issue.6 , pp. 1052-1060
    • Harper, K.N.1    Peters, B.2    Gamble, M.V.3
  • 3
    • 84878876131 scopus 로고    scopus 로고
    • American college of medical genetics and genomics technical standards and guidelines: microarray analysis for chromosome abnormalities in neoplastic disorders
    • Cooley L.D., Lebo M., Li M.M., Slovak M.L., Wolff D.J. American college of medical genetics and genomics technical standards and guidelines: microarray analysis for chromosome abnormalities in neoplastic disorders. Genetics Med 2013, 15(6):484-494.
    • (2013) Genetics Med , vol.15 , Issue.6 , pp. 484-494
    • Cooley, L.D.1    Lebo, M.2    Li, M.M.3    Slovak, M.L.4    Wolff, D.J.5
  • 4
    • 37849021093 scopus 로고    scopus 로고
    • Constructing the gene regulation-level representation of microarray data for cancer classification
    • Wong H.-S., Wang H.-Q. Constructing the gene regulation-level representation of microarray data for cancer classification. J Biomed Inform 2008, 41(1):95-105.
    • (2008) J Biomed Inform , vol.41 , Issue.1 , pp. 95-105
    • Wong, H.-S.1    Wang, H.-Q.2
  • 5
    • 0242295767 scopus 로고    scopus 로고
    • Bayesian factor regression models in the large p, small n paradigm
    • West M. Bayesian factor regression models in the large p, small n paradigm. Bayesian Stat 2003, 7(2003):723-732.
    • (2003) Bayesian Stat , vol.7 , Issue.2003 , pp. 723-732
    • West, M.1
  • 6
    • 84873206321 scopus 로고    scopus 로고
    • An evolutionary computational model applied to cluster analysis of DNA microarray data
    • Castellanos-Garzón J.A., Díaz F. An evolutionary computational model applied to cluster analysis of DNA microarray data. Expert Syst Appl 2013, 40(7):2575-2591.
    • (2013) Expert Syst Appl , vol.40 , Issue.7 , pp. 2575-2591
    • Castellanos-Garzón, J.A.1    Díaz, F.2
  • 7
    • 84879518789 scopus 로고    scopus 로고
    • An efficient clustering-classification method in an information gain NRGA-KNN algorithm for feature election of micro array data
    • Sungheetha A., Suganthi J. An efficient clustering-classification method in an information gain NRGA-KNN algorithm for feature election of micro array data. Life Sci J 2013, 10(Suppl. 7):691-700.
    • (2013) Life Sci J , vol.10 , Issue.SUPPL. 7 , pp. 691-700
    • Sungheetha, A.1    Suganthi, J.2
  • 8
    • 84878780754 scopus 로고    scopus 로고
    • Gene expression rule discovery and multi-objective ROC analysis using a neural-genetic hybrid
    • Keedwell E., Narayanan A. Gene expression rule discovery and multi-objective ROC analysis using a neural-genetic hybrid. Int J Data Mining Bioinform 2013, 7(4):376-396.
    • (2013) Int J Data Mining Bioinform , vol.7 , Issue.4 , pp. 376-396
    • Keedwell, E.1    Narayanan, A.2
  • 9
    • 84876824699 scopus 로고    scopus 로고
    • Multiobjective optimization using genetic algorithm
    • Gupta S., Garg S. Multiobjective optimization using genetic algorithm. Adv Chem Eng 2013, 43:206-245.
    • (2013) Adv Chem Eng , vol.43 , pp. 206-245
    • Gupta, S.1    Garg, S.2
  • 10
    • 74649083315 scopus 로고    scopus 로고
    • Ensemble gene selection by grouping for microarray data classification
    • Liu H., Liu L., Zhang H. Ensemble gene selection by grouping for microarray data classification. J Biomed Inform 2010, 43(1):81-87.
    • (2010) J Biomed Inform , vol.43 , Issue.1 , pp. 81-87
    • Liu, H.1    Liu, L.2    Zhang, H.3
  • 11
    • 4744346660 scopus 로고    scopus 로고
    • Discovering significant and interpretable patterns from multifactorial DNA microarray data with poor replication
    • Kim J.H., Jeoung D., Lee S., Kim H. Discovering significant and interpretable patterns from multifactorial DNA microarray data with poor replication. J Biomed Inform 2004, 37(4):260-268.
    • (2004) J Biomed Inform , vol.37 , Issue.4 , pp. 260-268
    • Kim, J.H.1    Jeoung, D.2    Lee, S.3    Kim, H.4
  • 12
    • 4744365291 scopus 로고    scopus 로고
    • Comprehensive vertical sample-based KNN/LSVM classification for gene expression analysis
    • Pan F., Wang B., Hu X., Perrizo W. Comprehensive vertical sample-based KNN/LSVM classification for gene expression analysis. J Biomed Inform 2004, 37(4):240-248.
    • (2004) J Biomed Inform , vol.37 , Issue.4 , pp. 240-248
    • Pan, F.1    Wang, B.2    Hu, X.3    Perrizo, W.4
  • 15
    • 67749089529 scopus 로고    scopus 로고
    • A genetic algorithm approach to DNA microarrays analysis of pancreatic cancer
    • Melita N., Popescu I., Holban S. A genetic algorithm approach to DNA microarrays analysis of pancreatic cancer. Adv Electr Comput Eng 2008, 8(2):43-48.
    • (2008) Adv Electr Comput Eng , vol.8 , Issue.2 , pp. 43-48
    • Melita, N.1    Popescu, I.2    Holban, S.3
  • 16
    • 77955334667 scopus 로고    scopus 로고
    • A hybrid LDA and genetic algorithm for gene selection and classification of microarray data
    • Bonilla Huerta E., Duval B., Hao J.-K. A hybrid LDA and genetic algorithm for gene selection and classification of microarray data. Neurocomputing 2010, 73(13-15):2375-2383.
    • (2010) Neurocomputing , vol.73 , Issue.13-15 , pp. 2375-2383
    • Bonilla Huerta, E.1    Duval, B.2    Hao, J.-K.3
  • 17
    • 77954968496 scopus 로고    scopus 로고
    • Genetic algorithm and support vector machine-based gene microarray analysis
    • Liu H., Wang W. Genetic algorithm and support vector machine-based gene microarray analysis. J Clin Rehabil Tissue Eng Res 2010, 14(17):3099-3103.
    • (2010) J Clin Rehabil Tissue Eng Res , vol.14 , Issue.17 , pp. 3099-3103
    • Liu, H.1    Wang, W.2
  • 18
    • 79151474328 scopus 로고    scopus 로고
    • Gene selection and sample classification on microarray data based on adaptive genetic algorithm/k-nearest neighbor method
    • Lee C.-P., Lin W.-S., Chen Y.-M., Kuo B.-J. Gene selection and sample classification on microarray data based on adaptive genetic algorithm/k-nearest neighbor method. Expert Syst Appl 2011, 38(5):4661-4667.
    • (2011) Expert Syst Appl , vol.38 , Issue.5 , pp. 4661-4667
    • Lee, C.-P.1    Lin, W.-S.2    Chen, Y.-M.3    Kuo, B.-J.4
  • 19
    • 26844513469 scopus 로고    scopus 로고
    • Overfitting in wrapper-based feature subset selection: the harder you try the worse it gets
    • Springer, London, M. Bramer, F. Coenen, T. Allen (Eds.)
    • Loughrey J., Cunningham P. Overfitting in wrapper-based feature subset selection: the harder you try the worse it gets. Research and development in intelligent systems XXI 2005, 33-43. Springer, London. M. Bramer, F. Coenen, T. Allen (Eds.).
    • (2005) Research and development in intelligent systems XXI , pp. 33-43
    • Loughrey, J.1    Cunningham, P.2
  • 20
    • 79957606714 scopus 로고    scopus 로고
    • Robust feature selection for microarray data based on multicriterion fusion
    • Yang F., Mao K.Z. Robust feature selection for microarray data based on multicriterion fusion. IEEE/ACM Trans Comput Biol Bioinform 2011, 8(4):1080-1092.
    • (2011) IEEE/ACM Trans Comput Biol Bioinform , vol.8 , Issue.4 , pp. 1080-1092
    • Yang, F.1    Mao, K.Z.2
  • 21
    • 84878657683 scopus 로고    scopus 로고
    • Incorporating feature ranking and evolutionary methods for the classification of high-dimensional DNA microarray gene expression data
    • Abedini M., Kirley M., Chiong R. Incorporating feature ranking and evolutionary methods for the classification of high-dimensional DNA microarray gene expression data. Austr Med J 2013, 6(5):272-279.
    • (2013) Austr Med J , vol.6 , Issue.5 , pp. 272-279
    • Abedini, M.1    Kirley, M.2    Chiong, R.3
  • 22
    • 36049043552 scopus 로고    scopus 로고
    • Mining pathway signatures from microarray data and relevant biological knowledge
    • Panteris E., Swift S., Payne A., Liu X. Mining pathway signatures from microarray data and relevant biological knowledge. J Biomed Inform 2007, 40(6):698-706.
    • (2007) J Biomed Inform , vol.40 , Issue.6 , pp. 698-706
    • Panteris, E.1    Swift, S.2    Payne, A.3    Liu, X.4
  • 23
    • 18744413287 scopus 로고    scopus 로고
    • Estimating misclassification error with small samples via bootstrap cross-validation
    • Fu W.J., Carroll R.J., Wang S. Estimating misclassification error with small samples via bootstrap cross-validation. Bioinformatics 2005, 21(9):1979-1986.
    • (2005) Bioinformatics , vol.21 , Issue.9 , pp. 1979-1986
    • Fu, W.J.1    Carroll, R.J.2    Wang, S.3
  • 24
    • 84902542239 scopus 로고    scopus 로고
    • Bootstrapping likelihood for model selection with small samples
    • Pan W. Bootstrapping likelihood for model selection with small samples; 1998.
    • (1998)
    • Pan, W.1
  • 27
    • 84858983547 scopus 로고    scopus 로고
    • KEGG for integration and interpretation of large-scale molecular data sets
    • Database-Issue
    • Kanehisa M., Goto S., Sato Y., Furumichi M., Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucl Acids Res 2012, 40(Database-Issue):109-114.
    • (2012) Nucl Acids Res , vol.40 , pp. 109-114
    • Kanehisa, M.1    Goto, S.2    Sato, Y.3    Furumichi, M.4    Tanabe, M.5
  • 28
    • 84874016103 scopus 로고    scopus 로고
    • Precise generation of systems biology models from KEGG pathways
    • Wrzodek C., Büchel F., Ruff M., Dräger A., Zell A. Precise generation of systems biology models from KEGG pathways. BMC Syst Biol 2013, 7(1):1-12.
    • (2013) BMC Syst Biol , vol.7 , Issue.1 , pp. 1-12
    • Wrzodek, C.1    Büchel, F.2    Ruff, M.3    Dräger, A.4    Zell, A.5
  • 29
    • 84877731788 scopus 로고    scopus 로고
    • Computationally identifying virulence factors based on KEGG pathways
    • Cui W., Chen L., Huang T., Gao Q., Jiang M., Zhang N., et al. Computationally identifying virulence factors based on KEGG pathways. Mol Biosyst 2013, 9:1447-1452.
    • (2013) Mol Biosyst , vol.9 , pp. 1447-1452
    • Cui, W.1    Chen, L.2    Huang, T.3    Gao, Q.4    Jiang, M.5    Zhang, N.6
  • 30
    • 80054862015 scopus 로고    scopus 로고
    • Microarray analysis of peripheral blood lymphocytes from ALS patients and the SAFE detection of the KEGG ALS pathway
    • Mougeot J.-L., Li Z., Price A., Wright F., Brooks B. Microarray analysis of peripheral blood lymphocytes from ALS patients and the SAFE detection of the KEGG ALS pathway. BMC Med Genom 2011, 4(1):74.
    • (2011) BMC Med Genom , vol.4 , Issue.1 , pp. 74
    • Mougeot, J.-L.1    Li, Z.2    Price, A.3    Wright, F.4    Brooks, B.5
  • 31
    • 84886034655 scopus 로고    scopus 로고
    • A combined omics study on activated macrophages - enhanced role of stats in apoptosis, immunity and lipid metabolism
    • Dinasarapu A.R., Gupta S., Maurya M.R., Fahy E., Min J., Sud M., et al. A combined omics study on activated macrophages - enhanced role of stats in apoptosis, immunity and lipid metabolism. Bioinformatics 2013, 29(21):2735-2743.
    • (2013) Bioinformatics , vol.29 , Issue.21 , pp. 2735-2743
    • Dinasarapu, A.R.1    Gupta, S.2    Maurya, M.R.3    Fahy, E.4    Min, J.5    Sud, M.6
  • 32
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub T., Slonim D., Tamayo P., Huard C., Gaasenbeek M., Mesirov J., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286(5439):531-537.
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.1    Slonim, D.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5    Mesirov, J.6
  • 33
    • 84902542229 scopus 로고    scopus 로고
    • hu6800.db: Affymetrix HuGeneFL Genome Array annotation data (chip hu6800)
    • R package version 2.6.3.
    • Carlson M, Falcon S, Pages H, Li N. hu6800.db: Affymetrix HuGeneFL Genome Array annotation data (chip hu6800), R package version 2.6.3.
    • Carlson, M.1    Falcon, S.2    Pages, H.3    Li, N.4
  • 34
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer behavior
    • Singh D., Febbo P.G., Ross K., Jackson D.G., Manola J., Ladd C., et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002, 1(2):203-209.
    • (2002) Cancer Cell , vol.1 , Issue.2 , pp. 203-209
    • Singh, D.1    Febbo, P.G.2    Ross, K.3    Jackson, D.G.4    Manola, J.5    Ladd, C.6
  • 35
    • 84902542230 scopus 로고    scopus 로고
    • hgu95av2.db: Affymetrix Human Genome U95 Set annotation data (chip hgu95av2)
    • R package version 2.8.0.
    • Carlson M. hgu95av2.db: Affymetrix Human Genome U95 Set annotation data (chip hgu95av2), R package version 2.8.0.
    • Carlson, M.1
  • 36
    • 0036735386 scopus 로고    scopus 로고
    • Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
    • Gordon G.J., Jensen R.V., li Hsiao L., Gullans S.R., Blumenstock J.E., Ramaswamy S., et al. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res 2002, 62:4963-4967.
    • (2002) Cancer Res , vol.62 , pp. 4963-4967
    • Gordon, G.J.1    Jensen, R.V.2    li Hsiao, L.3    Gullans, S.R.4    Blumenstock, J.E.5    Ramaswamy, S.6
  • 37
    • 84902542230 scopus 로고    scopus 로고
    • hgu95a.db: Affymetrix Human Genome U95 Set annotation data (chip hgu95a)
    • R package version 2.8.0.
    • Carlson M. hgu95a.db: Affymetrix Human Genome U95 Set annotation data (chip hgu95a), R package version 2.8.0.
    • Carlson, M.1
  • 38
    • 70249100266 scopus 로고    scopus 로고
    • HOXA9 modulates its oncogenic partner Meis1 to influence normal hematopoiesis
    • Hu Y.-L., Fong S., Ferrell C., Largman C., Shen W.-F. HOXA9 modulates its oncogenic partner Meis1 to influence normal hematopoiesis. Mol Cell Biol 2009, 29(18):5181-5192.
    • (2009) Mol Cell Biol , vol.29 , Issue.18 , pp. 5181-5192
    • Hu, Y.-L.1    Fong, S.2    Ferrell, C.3    Largman, C.4    Shen, W.-F.5
  • 39
    • 0003269032 scopus 로고
    • Genetic algorithms in search
    • Addison-Wesley Longman Publishing Co., Inc.
    • Goldberg D.E. Genetic algorithms in search. Optimization and machine learning 1989, Addison-Wesley Longman Publishing Co., Inc.
    • (1989) Optimization and machine learning
    • Goldberg, D.E.1
  • 41
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn 2002, 46(1-3):389-422.
    • (2002) Mach Learn , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 42
    • 0034602774 scopus 로고    scopus 로고
    • Knowledge-based analysis of microarray gene expression data by using support vector machines
    • Brown M., Grundy W., Lin D., Cristianini N., Sugnet C., Furey T., et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Nat Acad Sci USA 2000, 97(1):262-267.
    • (2000) Proc Nat Acad Sci USA , vol.97 , Issue.1 , pp. 262-267
    • Brown, M.1    Grundy, W.2    Lin, D.3    Cristianini, N.4    Sugnet, C.5    Furey, T.6
  • 45
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • Dash M., Liu H. Consistency-based search in feature selection. Artif Intell 2003, 151(1-2):155-176.
    • (2003) Artif Intell , vol.151 , Issue.1-2 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 46
    • 0000916783 scopus 로고    scopus 로고
    • Practical feature subset selection for machine learning
    • Hall M., Smith L. Practical feature subset selection for machine learning. J Comput Sci 1998, 98:4-6.
    • (1998) J Comput Sci , vol.98 , pp. 4-6
    • Hall, M.1    Smith, L.2
  • 47
    • 0004060921 scopus 로고    scopus 로고
    • Correlation-based feature selection for machine learning
    • Ph.D. thesis, University of Waikato
    • Hall M. Correlation-based feature selection for machine learning. Ph.D. thesis, University of Waikato; 1999.
    • (1999)
    • Hall, M.1
  • 48
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H., Long F., Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 2005, 27(8):1226-1238.
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 49
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • [Software available at
    • Chang C.-C., Lin C.-J. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2011, 2:1-27. [Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm].
    • (2011) ACM Trans Intell Syst Technol , vol.2 , pp. 1-27
    • Chang, C.-C.1    Lin, C.-J.2
  • 50
    • 84874645517 scopus 로고    scopus 로고
    • Assessment of geometric features for individual identification and verification in biometric hand systems
    • Luque-Baena R.M., Elizondo D., López-Rubio E., Palomo E.J., Watson T. Assessment of geometric features for individual identification and verification in biometric hand systems. Expert Syst Appl 2013, 40(9):3580-3594.
    • (2013) Expert Syst Appl , vol.40 , Issue.9 , pp. 3580-3594
    • Luque-Baena, R.M.1    Elizondo, D.2    López-Rubio, E.3    Palomo, E.J.4    Watson, T.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.