메뉴 건너뛰기




Volumn , Issue , 2010, Pages 315-326

Robust mining of time intervals with semi-interval partial order patterns

Author keywords

[No Author keywords available]

Indexed keywords

EMPIRICAL EVALUATIONS; INTERVAL DATA; ITEMSET MINING; MINING ALGORITHMS; NEW APPROACHES; PARTIAL ORDER; SEQUENTIAL PATTERNS; TIME INTERVAL;

EID: 80052392674     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972801.28     Document Type: Conference Paper
Times cited : (66)

References (45)
  • 1
    • 0029212693 scopus 로고
    • Mining sequential patterns
    • IEEE Press
    • R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. IEEE ICDE, pages 3-14. IEEE Press, 1995.
    • (1995) Proc. IEEE ICDE , pp. 3-14
    • Agrawal, R.1    Srikant, R.2
  • 3
    • 0020849266 scopus 로고
    • Maintaining knowledge about temporal intervals
    • J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11):832-843, 1983.
    • (1983) Communications of the ACM , vol.26 , Issue.11 , pp. 832-843
    • Allen, J.F.1
  • 6
    • 26844495651 scopus 로고    scopus 로고
    • Discovering fuzzy time-interval sequential patterns in sequence databases
    • Y.-L. Chen and T.-K. Huang. Discovering fuzzy time-interval sequential patterns in sequence databases. IEEE Trans. Systems, Man, and Cybernetics, 35(5):959-972, 2005.
    • (2005) IEEE Trans. Systems, Man, and Cybernetics , vol.35 , Issue.5 , pp. 959-972
    • Chen, Y.-L.1    Huang, T.-K.2
  • 7
    • 34548741255 scopus 로고    scopus 로고
    • Discriminative frequent pattern analysis for effective classification
    • H. Cheng, X. Yan, J. Han, and C.-W. Hsu. Discriminative frequent pattern analysis for effective classification. In Proc. IEEE ICDE, 2007.
    • (2007) Proc. IEEE ICDE
    • Cheng, H.1    Yan, X.2    Han, J.3    Hsu, C.-W.4
  • 11
    • 0026839993 scopus 로고
    • Temporal reasoning based on semi-intervals
    • C. Freksa. Temporal reasoning based on semi-intervals. Artificial Intelligence, 54(1):199-227, 1992.
    • (1992) Artificial Intelligence , vol.54 , Issue.1 , pp. 199-227
    • Freksa, C.1
  • 13
    • 0034773434 scopus 로고    scopus 로고
    • A method for automated temporal knowledge acquisition applied to sleep-related breathing disorders
    • G. Guimarães, J. Peter, T. Penzel, and A. Ultsch. A method for automated temporal knowledge acquisition applied to sleep-related breathing disorders. Artificial Intelligence in Medicine, 23(3):211-237, 2001.
    • (2001) Artificial Intelligence in Medicine , vol.23 , Issue.3 , pp. 211-237
    • Guimarães, G.1    Peter, J.2    Penzel, T.3    Ultsch, A.4
  • 16
    • 57049152226 scopus 로고    scopus 로고
    • Generalized sequential pattern minin with item intervals
    • Y. Hirate and H. Yamaha. Generalized sequential pattern minin with item intervals. Journal of computers, 1(3):51-60, 2006.
    • (2006) Journal of Computers , vol.1 , Issue.3 , pp. 51-60
    • Hirate, Y.1    Yamaha, H.2
  • 20
    • 84947563969 scopus 로고    scopus 로고
    • Discovering temporal patterns for interval-based events
    • Springer
    • P.-S. Kam and A.W.-C. Fu. Discovering temporal patterns for interval-based events. In Proc. DaWaK, pages 317-326. Springer, 2000.
    • (2000) Proc. DaWaK , pp. 317-326
    • Kam, P.-S.1    Fu, A.W.-C.2
  • 21
    • 84879600265 scopus 로고    scopus 로고
    • Fsmtree: An efficient algorithm for mining frequent temporal patterns
    • Springer
    • S. Kempe, J. Hipp, and R. Kruse. Fsmtree: An efficient algorithm for mining frequent temporal patterns. In Proc. Conf. of the Gesellschaft fr Klassifikation, pages 253-260. Springer, 2008.
    • (2008) Proc. Conf. of the Gesellschaft Fr Klassifikation , pp. 253-260
    • Kempe, S.1    Hipp, J.2    Kruse, R.3
  • 22
    • 31344457479 scopus 로고    scopus 로고
    • Fast and memory efficient mining of frequent closed itemsets
    • C. Lucchese, S. Orlando, and R. Perego. Fast and memory efficient mining of frequent closed itemsets. IEEE TKDE, 18(1):21-36, 2006.
    • (2006) IEEE TKDE , vol.18 , Issue.1 , pp. 21-36
    • Lucchese, C.1    Orlando, S.2    Perego, R.3
  • 25
    • 34548073451 scopus 로고    scopus 로고
    • A better tool than allen's relations for expressing temporal knowledge in interval data
    • F. Mörchen. A better tool than allen's relations for expressing temporal knowledge in interval data. In TDM Workshop, ACM SIGKDD, pages 25-34, 2006.
    • (2006) TDM Workshop, ACM SIGKDD , pp. 25-34
    • Mörchen, F.1
  • 26
    • 42149167220 scopus 로고    scopus 로고
    • Unsupervised pattern mining from symbolic temporal data
    • F. Mörchen. Unsupervised pattern mining from symbolic temporal data. SIGKDD Explor. Newsl., 9(1):41-55, 2007.
    • (2007) SIGKDD Explor. Newsl. , vol.9 , Issue.1 , pp. 41-55
    • Mörchen, F.1
  • 27
    • 32344436715 scopus 로고    scopus 로고
    • Optimizing time series discretization for knowledge discovery
    • ACM Press
    • F. Mörchen and A. Ultsch. Optimizing time series discretization for knowledge discovery. In Proc. ACM SIGKDD, pages 660-665. ACM Press, 2005.
    • (2005) Proc. ACM SIGKDD , pp. 660-665
    • Mörchen, F.1    Ultsch, A.2
  • 28
    • 34548085733 scopus 로고    scopus 로고
    • Efficient mining of understandable patterns from multivariate interval time series
    • F. Mörchen and A. Ultsch. Efficient mining of understandable patterns from multivariate interval time series. Data Min. Knowl. Discov., 2007.
    • (2007) Data Min. Knowl. Discov.
    • Mörchen, F.1    Ultsch, A.2
  • 31
    • 57149147858 scopus 로고    scopus 로고
    • Mining relationships among interval-based events for classification
    • D. Patel, W. Hsu, and M. Lee. Mining relationships among interval-based events for classification. In Proc. SIGMOD, pages 393-404, 2008.
    • (2008) Proc. SIGMOD , pp. 393-404
    • Patel, D.1    Hsu, W.2    Lee, M.3
  • 33
    • 85008031218 scopus 로고    scopus 로고
    • Discovering frequent closed partial orders from strings
    • J. Pei, H. Wang, J. Liu, K. Wang, J. Wang, and P. S. Yu. Discovering frequent closed partial orders from strings. IEEE TKDE, 18(11):1467-1481, 2006.
    • (2006) IEEE TKDE , vol.18 , Issue.11 , pp. 1467-1481
    • Pei, J.1    Wang, H.2    Liu, J.3    Wang, K.4    Wang, J.5    Yu, P.S.6
  • 36
    • 17444430393 scopus 로고    scopus 로고
    • Linear temporal sequences and their interpretation using midpoint relationships
    • J. F. Roddick and C. H. Mooney. Linear temporal sequences and their interpretation using midpoint relationships. IEEE TKDE, 17(1):133-135, 2005.
    • (2005) IEEE TKDE , vol.17 , Issue.1 , pp. 133-135
    • Roddick, J.F.1    Mooney, C.H.2
  • 38
    • 0032304547 scopus 로고    scopus 로고
    • Real-time American sign language recognition using desk and wearable computer-based video
    • T. Starner, J. Weaver, and A. Pentland. Real-time American Sign Language recognition using desk and wearable computer-based video. IEEE TPAMI, 20(12), 1998.
    • (1998) IEEE TPAMI , vol.20 , Issue.12
    • Starner, T.1    Weaver, J.2    Pentland, A.3
  • 40
    • 2442446148 scopus 로고    scopus 로고
    • BIDE: Efficient mining of frequent closed sequences
    • IEEE Press
    • J. Wang and J. Han. BIDE: Efficient mining of frequent closed sequences. In Proc. ICDE, pages 79-90. IEEE Press, 2004.
    • (2004) Proc. ICDE , pp. 79-90
    • Wang, J.1    Han, J.2
  • 41
    • 34250202878 scopus 로고    scopus 로고
    • Armada - An algorithm for discovering richer relative temporal association rules from interval-based data
    • E. Winarko and J. F. Roddick. Armada - an algorithm for discovering richer relative temporal association rules from interval-based data. Data & Knowledge Engineering, 2007.
    • (2007) Data & Knowledge Engineering
    • Winarko, E.1    Roddick, J.F.2
  • 42
    • 34247574865 scopus 로고    scopus 로고
    • Mining nonambiguous temporal patterns for interval-based events
    • S.-Y. Wu and Y.-L. Chen. Mining nonambiguous temporal patterns for interval-based events. IEEE TKDE, 19(6):742-758, 2007.
    • (2007) IEEE TKDE , vol.19 , Issue.6 , pp. 742-758
    • Wu, S.-Y.1    Chen, Y.-L.2
  • 43
  • 44
    • 0033687079 scopus 로고    scopus 로고
    • Mining sequential patterns including time intervals
    • M. Yoshida, T. Iizuka, H. Shiohara, and M. Ishiguro. Mining sequential patterns including time intervals. In Proc. of SPIE, volume 4057, pages 213-220, 2000.
    • (2000) Proc. of SPIE , vol.4057 , pp. 213-220
    • Yoshida, M.1    Iizuka, T.2    Shiohara, H.3    Ishiguro, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.