메뉴 건너뛰기




Volumn 174, Issue , 2016, Pages 179-186

Regression and classification using extreme learning machine based on L1-norm and L2-norm

Author keywords

Bayesian information criterion (BIC); Elastic net; Extreme learning machine; Model selection; Ridge regression

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; BENCHMARKING; COMPLEX NETWORKS; KNOWLEDGE ACQUISITION; LEARNING ALGORITHMS; MACHINERY; REGRESSION ANALYSIS;

EID: 84940063453     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2015.03.112     Document Type: Article
Times cited : (117)

References (28)
  • 1
    • 83455179027 scopus 로고    scopus 로고
    • Are you ready for the era of 'big data'
    • Brown B., Chui M., Manyika J. Are you ready for the era of 'big data'. McKinsey Q. 2011, 4:24-35.
    • (2011) McKinsey Q. , vol.4 , pp. 24-35
    • Brown, B.1    Chui, M.2    Manyika, J.3
  • 2
    • 84862822032 scopus 로고    scopus 로고
    • Efficient and effective algorithms for training single-hidden-layer neural networks
    • Yu D., Deng L. Efficient and effective algorithms for training single-hidden-layer neural networks. Pattern Recognit. Lett. 2012, 33(5):554-558.
    • (2012) Pattern Recognit. Lett. , vol.33 , Issue.5 , pp. 554-558
    • Yu, D.1    Deng, L.2
  • 3
    • 80051551703 scopus 로고    scopus 로고
    • An optimizing BP neural network algorithm based on genetic algorithm
    • Ding S., Su C., Yu J. An optimizing BP neural network algorithm based on genetic algorithm. Artif. Intell. Rev. 2011, 36(2):153-162.
    • (2011) Artif. Intell. Rev. , vol.36 , Issue.2 , pp. 153-162
    • Ding, S.1    Su, C.2    Yu, J.3
  • 4
    • 84907546260 scopus 로고    scopus 로고
    • A Taylor based localization algorithm for wireless sensor network using extreme learning machine
    • Luo X., Chang X., Liu H. A Taylor based localization algorithm for wireless sensor network using extreme learning machine. IEICE Trans. Inf. Syst. E 2014, 97D(10):2652-2659.
    • (2014) IEICE Trans. Inf. Syst. E , vol.97D , Issue.10 , pp. 2652-2659
    • Luo, X.1    Chang, X.2    Liu, H.3
  • 5
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine. theory and applications
    • Huang G.-B., Zhu Q., Siew C. Extreme learning machine. theory and applications. Neurocomputing 2006, 70(1):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.2    Siew, C.3
  • 6
    • 84930086068 scopus 로고    scopus 로고
    • A novel data fusion scheme using grey model and extreme learning machine in wireless sensor networks
    • Luo X., Chang X. A novel data fusion scheme using grey model and extreme learning machine in wireless sensor networks. Int. J. Control Autom. Syst. 2015, 13(3):539-546.
    • (2015) Int. J. Control Autom. Syst. , vol.13 , Issue.3 , pp. 539-546
    • Luo, X.1    Chang, X.2
  • 9
    • 55949132682 scopus 로고    scopus 로고
    • A fast pruned-extreme learning machine for classification problem
    • Rong H.-J., Ong Y.-S., Tan A.-H., Zhu Z. A fast pruned-extreme learning machine for classification problem. Neurocomputing 2008, 72(1):359-366.
    • (2008) Neurocomputing , vol.72 , Issue.1 , pp. 359-366
    • Rong, H.-J.1    Ong, Y.-S.2    Tan, A.-H.3    Zhu, Z.4
  • 12
    • 62549127689 scopus 로고    scopus 로고
    • Elastic-net regularization in learning theory
    • de Mol C., de Vito E., Rosasco L. Elastic-net regularization in learning theory. J. Complex. 2009, 25(2):201-230.
    • (2009) J. Complex. , vol.25 , Issue.2 , pp. 201-230
    • de Mol, C.1    de Vito, E.2    Rosasco, L.3
  • 13
    • 8744307994 scopus 로고    scopus 로고
    • Multimodel inference understanding AIC and BIC in model selection
    • Burnham K.P., Anderson D.R. Multimodel inference understanding AIC and BIC in model selection. Sociol. Methods Res. 2004, 33(2):261-304.
    • (2004) Sociol. Methods Res. , vol.33 , Issue.2 , pp. 261-304
    • Burnham, K.P.1    Anderson, D.R.2
  • 14
    • 84870243622 scopus 로고    scopus 로고
    • Parallel extreme learning machine for regression based on MapReduce
    • He Q., Shang T., Zhuang F., Shi Z. Parallel extreme learning machine for regression based on MapReduce. Neurocomputing 2013, 102:52-58.
    • (2013) Neurocomputing , vol.102 , pp. 52-58
    • He, Q.1    Shang, T.2    Zhuang, F.3    Shi, Z.4
  • 19
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H., Hastie T. Regularization and variable selection via the elastic net. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 2005, 67(2):301-320.
    • (2005) J. R. Stat. Soc.: Ser. B (Stat. Methodol.) , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 20
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • Breiman L. Heuristics of instability and stabilization in model selection. Ann. Stat. 1996, 24(6):2350-2383.
    • (1996) Ann. Stat. , vol.24 , Issue.6 , pp. 2350-2383
    • Breiman, L.1
  • 21
    • 84942484786 scopus 로고
    • Ridge regression. biased estimation for nonorthogonal problems
    • Hoerl A.E., Kennard R.W. Ridge regression. biased estimation for nonorthogonal problems. Technometrics 1970, 12(1):55-67.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 22
    • 79960810210 scopus 로고    scopus 로고
    • Manifold elastic net. a unified framework for sparse dimension reduction
    • Zhou T., Tao D., Wu X. Manifold elastic net. a unified framework for sparse dimension reduction. Data Min. Knowl. Discov. 2011, 22(3):340-371.
    • (2011) Data Min. Knowl. Discov. , vol.22 , Issue.3 , pp. 340-371
    • Zhou, T.1    Tao, D.2    Wu, X.3
  • 23
    • 79551657781 scopus 로고    scopus 로고
    • The Bayesian elastic net
    • Li Q., Lin N. The Bayesian elastic net. Bayesian Anal. 2010, 5(1):151-170.
    • (2010) Bayesian Anal. , vol.5 , Issue.1 , pp. 151-170
    • Li, Q.1    Lin, N.2
  • 24
    • 34250108028 scopus 로고
    • Model selection and Akaike's information criterion (AIC). the general theory and its analytical extensions
    • Bozdogan H. Model selection and Akaike's information criterion (AIC). the general theory and its analytical extensions. Psychometrika 1987, 52(3):345-370.
    • (1987) Psychometrika , vol.52 , Issue.3 , pp. 345-370
    • Bozdogan, H.1
  • 25
  • 26
    • 84876926544 scopus 로고    scopus 로고
    • Chaotic time series prediction based on a novel robust echo state network
    • Li D., Han M., Wang J. Chaotic time series prediction based on a novel robust echo state network. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23(5):787-799.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , Issue.5 , pp. 787-799
    • Li, D.1    Han, M.2    Wang, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.