메뉴 건너뛰기




Volumn 44, Issue , 2015, Pages 101-110

Kalman filter-based method for Online Sequential Extreme Learning Machine for regression problems

Author keywords

Extreme learning machine; Kalman filter regression; Multicollinearity; Online Sequential Extreme Learning Machine; Online sequential learning

Indexed keywords

BENCHMARKING; E-LEARNING; KALMAN FILTERS; KNOWLEDGE ACQUISITION; MACHINE LEARNING; PREDICTIVE ANALYTICS; REGRESSION ANALYSIS;

EID: 84940040929     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2015.05.010     Document Type: Article
Times cited : (34)

References (35)
  • 3
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 2006 1 30
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1
  • 5
    • 84943987463 scopus 로고
    • Multiple comparisons among means
    • O.J. Dunn Multiple comparisons among means J. Am. Stat. Assoc. 56 293 1961 52 64
    • (1961) J. Am. Stat. Assoc. , vol.56 , Issue.293 , pp. 52-64
    • Dunn, O.J.1
  • 6
    • 0002313891 scopus 로고
    • Multicollinearity in regression analysis: the problem revisited
    • D.E. Farrar, and R.R. Glauber Multicollinearity in regression analysis: the problem revisited Rev. Econ. Stat. 1967 92 107
    • (1967) Rev. Econ. Stat. , pp. 92-107
    • Farrar, D.E.1    Glauber, R.R.2
  • 7
    • 0040850554 scopus 로고    scopus 로고
    • Stability of the inverse correlation matrix. partial ridge regression
    • T. Foucart Stability of the inverse correlation matrix. partial ridge regression J. Stat. Plann. Inference 77 1 1999 141 154
    • (1999) J. Stat. Plann. Inference , vol.77 , Issue.1 , pp. 141-154
    • Foucart, T.1
  • 8
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • M. Friedman A comparison of alternative tests of significance for the problem of m rankings Ann. Math. Stat. 11 1 1940 86 92
    • (1940) Ann. Math. Stat. , vol.11 , Issue.1 , pp. 86-92
    • Friedman, M.1
  • 10
    • 84893654394 scopus 로고    scopus 로고
    • Toselm: timeliness online sequential extreme learning machine
    • Y. Gu, J. Liu, Y. Chen, X. Jiang, and H. Yu Toselm: timeliness online sequential extreme learning machine Neurocomputing 128 2014 119 127
    • (2014) Neurocomputing , vol.128 , pp. 119-127
    • Gu, Y.1    Liu, J.2    Chen, Y.3    Jiang, X.4    Yu, H.5
  • 11
    • 84893693421 scopus 로고    scopus 로고
    • An incremental extreme learning machine for online sequential learning problems
    • L. Guo, J.h. Hao, and M. Liu An incremental extreme learning machine for online sequential learning problems Neurocomputing 128 2014 50 58
    • (2014) Neurocomputing , vol.128 , pp. 50-58
    • Guo, L.1    Hao, J.H.2    Liu, M.3
  • 13
    • 84908682236 scopus 로고    scopus 로고
    • Trends in extreme learning machines: a review
    • G. Huang, G.B. Huang, S. Song, and K. You Trends in extreme learning machines: a review Neural Netw. 61 2015 32 48
    • (2015) Neural Netw. , vol.61 , pp. 32-48
    • Huang, G.1    Huang, G.B.2    Song, S.3    You, K.4
  • 14
    • 13844256702 scopus 로고    scopus 로고
    • A generalized growing and pruning rbf (ggap-rbf) neural network for function approximation
    • G.B. Huang, P. Saratchandran, and N. Sundararajan A generalized growing and pruning rbf (ggap-rbf) neural network for function approximation IEEE Trans. Neural Netw. 16 1 2005 57 67
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.1 , pp. 57-67
    • Huang, G.B.1    Saratchandran, P.2    Sundararajan, N.3
  • 17
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • G.B. Huang, Q.Y. Zhu, and C.K. Siew Extreme learning machine: theory and applications Neurocomputing 70 1 2006 489 501
    • (2006) Neurocomputing , vol.70 , Issue.1 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 18
    • 80052829448 scopus 로고    scopus 로고
    • Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks
    • H.T. Huynh, and Y. Won Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks Pattern Recognit. Lett. 32 14 2011 1930 1935
    • (2011) Pattern Recognit. Lett. , vol.32 , Issue.14 , pp. 1930-1935
    • Huynh, H.T.1    Won, Y.2
  • 19
    • 0001553560 scopus 로고
    • A function estimation approach to sequential learning with neural networks
    • V. Kadirkamanathan, and M. Niranjan A function estimation approach to sequential learning with neural networks Neural Comput. 5 6 1993 954 975
    • (1993) Neural Comput. , vol.5 , Issue.6 , pp. 954-975
    • Kadirkamanathan, V.1    Niranjan, M.2
  • 20
    • 84874022475 scopus 로고    scopus 로고
    • An enhanced extreme learning machine based on ridge regression for regression
    • G. Li, and P. Niu An enhanced extreme learning machine based on ridge regression for regression Neural Comput. Appl. 22 3-4 2013 803 810
    • (2013) Neural Comput. Appl. , vol.22 , Issue.3-4 , pp. 803-810
    • Li, G.1    Niu, P.2
  • 21
    • 34047174077 scopus 로고    scopus 로고
    • A fast and accurate online sequential learning algorithm for feedforward networks
    • N.Y. Liang, G.B. Huang, P. Saratchandran, and N. Sundararajan A fast and accurate online sequential learning algorithm for feedforward networks IEEE Trans. Neural Netw. 17 6 2006 1411 1423
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.6 , pp. 1411-1423
    • Liang, N.Y.1    Huang, G.B.2    Saratchandran, P.3    Sundararajan, N.4
  • 22
    • 84888290676 scopus 로고    scopus 로고
    • A hybrid approach combining extreme learning machine and sparse representation for image classification
    • M. Luo, and K. Zhang A hybrid approach combining extreme learning machine and sparse representation for image classification Eng. Appl. Artif. Intell. 27 2014 228 235
    • (2014) Eng. Appl. Artif. Intell. , vol.27 , pp. 228-235
    • Luo, M.1    Zhang, K.2
  • 23
    • 79956090028 scopus 로고    scopus 로고
    • Application of extreme learning machine for series compensated transmission line protection
    • V. Malathi, N. Marimuthu, S. Baskar, and K. Ramar Application of extreme learning machine for series compensated transmission line protection Eng. Appl. Artif. Intell. 24 5 2011 880 887
    • (2011) Eng. Appl. Artif. Intell. , vol.24 , Issue.5 , pp. 880-887
    • Malathi, V.1    Marimuthu, N.2    Baskar, S.3    Ramar, K.4
  • 24
    • 84897696475 scopus 로고    scopus 로고
    • Improving the statistical arbitrage strategy in intraday trading by combining extreme learning machine and support vector regression with linear regression models
    • IEEE, Washington, DC, USA
    • Nobrega, J.P., Oliveira, A.L.I., 2013. Improving the statistical arbitrage strategy in intraday trading by combining extreme learning machine and support vector regression with linear regression models. In: 2013 IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI), IEEE, Washington, DC, USA, p. 182-188.
    • (2013) 2013 IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI) , pp. 182-188
    • Nobrega, J.P.1    Oliveira, A.L.I.2
  • 25
    • 84938149965 scopus 로고    scopus 로고
    • A combination forecasting model using machine learning and kalman filter for statistical arbitrage
    • IEEE, San Diego, CA, USA
    • Nobrega, J.P., Oliveira, A.L.I., 2014. A combination forecasting model using machine learning and kalman filter for statistical arbitrage. In: 2014 IEEE International Conference on Systems, Man and Cybernetics (SMC), IEEE, San Diego, CA, USA, p. 1294-1299.
    • (2014) 2014 IEEE International Conference on Systems, Man and Cybernetics (SMC) , pp. 1294-1299
    • Nobrega, J.P.1    Oliveira, A.L.I.2
  • 26
    • 0001071040 scopus 로고
    • A resource-allocating network for function interpolation
    • J. Platt A resource-allocating network for function interpolation Neural Comput. 3 2 1991 213 225
    • (1991) Neural Comput. , vol.3 , Issue.2 , pp. 213-225
    • Platt, J.1
  • 28
    • 0022471098 scopus 로고
    • Learning representations by back-propagation errors
    • D. Ruhmelhart, G. Hinton, and R. Wiliams Learning representations by back-propagation errors Nature 323 1986 533 536
    • (1986) Nature , vol.323 , pp. 533-536
    • Ruhmelhart, D.1    Hinton, G.2    Wiliams, R.3
  • 29
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: pitfalls to avoid and a recommended approach
    • S.L. Salzberg On comparing classifiers: pitfalls to avoid and a recommended approach Data Min. Knowl. Discov. 1 3 1997 317 328
    • (1997) Data Min. Knowl. Discov. , vol.1 , Issue.3 , pp. 317-328
    • Salzberg, S.L.1
  • 30
    • 0002196917 scopus 로고
    • Comparing individual means in the analysis of variance
    • J.W. Tukey Comparing individual means in the analysis of variance Biometrics 1949 99 114
    • (1949) Biometrics , pp. 99-114
    • Tukey, J.W.1
  • 31
    • 84923377302 scopus 로고    scopus 로고
    • Improved extreme learning machine for multivariate time series online sequential prediction
    • X. Wang, and M. Han Improved extreme learning machine for multivariate time series online sequential prediction Eng. Appl. Artif. Intell. 40 2015 28 36
    • (2015) Eng. Appl. Artif. Intell. , vol.40 , pp. 28-36
    • Wang, X.1    Han, M.2
  • 32
    • 0038432485 scopus 로고
    • Kalman filtering as an alternative to ordinary least squaressome theoretical considerations and empirical results
    • P. Watson Kalman filtering as an alternative to ordinary least squaressome theoretical considerations and empirical results Empir. Econ. 8 2 1983 71 85
    • (1983) Empir. Econ. , vol.8 , Issue.2 , pp. 71-85
    • Watson, P.1
  • 33
    • 84878490532 scopus 로고    scopus 로고
    • Online sequential extreme learning machine in nonstationary environments
    • Y. Ye, S. Squartini, and F. Piazza Online sequential extreme learning machine in nonstationary environments Neurocomputing 116 2013 94 101
    • (2013) Neurocomputing , vol.116 , pp. 94-101
    • Ye, Y.1    Squartini, S.2    Piazza, F.3
  • 34
    • 0032022388 scopus 로고    scopus 로고
    • Performance evaluation of a sequential minimal radial basis function (rbf) neural network learning algorithm
    • L. Yingwei, N. Sundararajan, and P. Saratchandran Performance evaluation of a sequential minimal radial basis function (rbf) neural network learning algorithm IEEE Trans. Neural Netw. 9 2 1998 308 318
    • (1998) IEEE Trans. Neural Netw. , vol.9 , Issue.2 , pp. 308-318
    • Yingwei, L.1    Sundararajan, N.2    Saratchandran, P.3
  • 35
    • 84874018050 scopus 로고    scopus 로고
    • Estimation of effluent quality using pls-based extreme learning machines
    • L. Zhao, D. Wang, and T. Chai Estimation of effluent quality using pls-based extreme learning machines Neural Comput. Appl. 22 3-4 2013 509 519
    • (2013) Neural Comput. Appl. , vol.22 , Issue.3-4 , pp. 509-519
    • Zhao, L.1    Wang, D.2    Chai, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.