-
1
-
-
84859007933
-
Extreme learning machine for regression and multiclass classification
-
Apr.
-
G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classification," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513-529, Apr. 2012.
-
(2012)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.42
, Issue.2
, pp. 513-529
-
-
Huang, G.-B.1
Zhou, H.2
Ding, X.3
Zhang, R.4
-
2
-
-
79958178274
-
Extreme learning machines: A survey
-
Jun.
-
G.-B. Huang, D. H. Wang, and Y. Lan, "Extreme learning machines: A survey," Int. J. Mach. Learn. Cybern., vol. 2, no. 2, pp. 107-122, Jun. 2011.
-
(2011)
Int. J. Mach. Learn. Cybern.
, vol.2
, Issue.2
, pp. 107-122
-
-
Huang, G.-B.1
Wang, D.H.2
Lan, Y.3
-
3
-
-
33745918399
-
Universal approximation using incremental constructive feedforward networks with random hidden nodes
-
Jul.
-
G.-B. Huang, L. Chen, and C.-K. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes," IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879-892, Jul. 2006.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, Issue.4
, pp. 879-892
-
-
Huang, G.-B.1
Chen, L.2
Siew, C.-K.3
-
4
-
-
33745903481
-
Extreme learning machine: Theory and applications
-
Dec.
-
G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: Theory and applications," Neurocomputing, vol. 70, nos. 1-3, pp. 489-501, Dec. 2006.
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
5
-
-
11144307615
-
-
Upper Saddle River, NJ, USA: Prentice-Hall
-
S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2004.
-
(2004)
A Comprehensive Foundation, 2nd Ed.
-
-
Haykin, S.1
Networks, N.2
-
6
-
-
0034419669
-
Regularization networks and support vector machines
-
Apr.
-
T. Evgeniou, M. Pontil, and T. Poggio, "Regularization networks and support vector machines," Adv. Comput. Math., vol. 13, no. 1, pp. 1-50, Apr. 2000.
-
(2000)
Adv. Comput. Math.
, vol.13
, Issue.1
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
7
-
-
84896346767
-
Music classification using extreme learning machines
-
Trieste, Italy, Sep.
-
S. Scardapane, D. Comminiello, M. Scarpiniti, and A. Uncini, "Music classification using extreme learning machines," in Proc. 8th Int. Symp. Image Signal Process. Anal. (ISPA), Trieste, Italy, Sep. 2013, pp. 377-381.
-
(2013)
Proc. 8th Int. Symp. Image Signal Process. Anal. (ISPA)
, pp. 377-381
-
-
Scardapane, S.1
Comminiello, D.2
Scarpiniti, M.3
Uncini, A.4
-
8
-
-
34047174077
-
A fast and accurate online sequential learning algorithm for feedforward networks
-
Nov.
-
N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, "A fast and accurate online sequential learning algorithm for feedforward networks," IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1411-1423, Nov. 2006.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, Issue.6
, pp. 1411-1423
-
-
Liang, N.-Y.1
Huang, G.-B.2
Saratchandran, P.3
Sundararajan, N.4
-
9
-
-
73949154686
-
OP-ELM: Optimally pruned extreme learning machine
-
Jan.
-
Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, and A. Lendasse, "OP-ELM: Optimally pruned extreme learning machine," IEEE Trans. Neural Netw., vol. 21, no. 1, pp. 158-162, Jan. 2010.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.1
, pp. 158-162
-
-
Miche, Y.1
Sorjamaa, A.2
Bas, P.3
Simula, O.4
Jutten, C.5
Lendasse, A.6
-
10
-
-
58549103087
-
No-reference image quality assessment using modified extreme learning machine classifier
-
Mar.
-
S. Suresh, R. V. Babu, and H. J. Kim, "No-reference image quality assessment using modified extreme learning machine classifier," Appl. Soft Comput., vol. 9, no. 2, pp. 541-552, Mar. 2009.
-
(2009)
Appl. Soft Comput.
, vol.9
, Issue.2
, pp. 541-552
-
-
Suresh, S.1
Babu, R.V.2
Kim, H.J.3
-
11
-
-
77957870624
-
Performance enhancement of extreme learning machine for multi-category sparse data classification problems
-
Oct.
-
S. Suresh, S. Saraswathi, and N. Sundararajan, "Performance enhancement of extreme learning machine for multi-category sparse data classification problems," Eng. Appl. Artif. Intell., vol. 23, no. 7, pp. 1149-1157, Oct. 2010.
-
(2010)
Eng. Appl. Artif. Intell.
, vol.23
, Issue.7
, pp. 1149-1157
-
-
Suresh, S.1
Saraswathi, S.2
Sundararajan, N.3
-
12
-
-
55949132682
-
A fast pruned-extreme learning machine for classification problem
-
Dec.
-
H.-J. Rong, Y.-S. Ong, A.-H. Tan, and Z. Zhu, "A fast pruned-extreme learning machine for classification problem," Neurocomputing, vol. 72, nos. 1-3, pp. 359-366, Dec. 2008.
-
(2008)
Neurocomputing
, vol.72
, Issue.1-3
, pp. 359-366
-
-
Rong, H.-J.1
Ong, Y.-S.2
Tan, A.-H.3
Zhu, Z.4
-
13
-
-
34548158996
-
Convex incremental extreme learning machine
-
Oct.
-
G.-B. Huang and L. Chen, "Convex incremental extreme learning machine," Neurocomputing, vol. 70, nos. 16-18, pp. 3056-3062, Oct. 2007.
-
(2007)
Neurocomputing
, vol.70
, Issue.16-18
, pp. 3056-3062
-
-
Huang, G.-B.1
Chen, L.2
-
14
-
-
85008039450
-
Online sequential fuzzy extreme learning machine for function approximation and classification problems
-
Aug.
-
H.-J. Rong, G.-B. Huang, N. Sundararajan, and P. Saratchandran, "Online sequential fuzzy extreme learning machine for function approximation and classification problems," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39, no. 4, pp. 1067-1072, Aug. 2009.
-
(2009)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.39
, Issue.4
, pp. 1067-1072
-
-
Rong, H.-J.1
Huang, G.-B.2
Sundararajan, N.3
Saratchandran, P.4
-
15
-
-
84888754031
-
-
Hoboken, NJ, USA: Wiley Mar.
-
J. C. Príncipe, W. Liu, and S. Haykin, Kernel Adaptive Filtering: A Comprehensive Introduction. Hoboken, NJ, USA: Wiley, Mar. 2010.
-
(2010)
Kernel Adaptive Filtering: A Comprehensive Introduction
-
-
Príncipe, J.C.1
Liu, W.2
Haykin, S.3
-
16
-
-
3543110224
-
Online learning with kernels
-
Aug.
-
J. Kivinen, A. J. Smola, and R. C. Williamson, "Online learning with kernels," IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2165-2176, Aug. 2004.
-
(2004)
IEEE Trans. Signal Process.
, vol.52
, Issue.8
, pp. 2165-2176
-
-
Kivinen, J.1
Smola, A.J.2
Williamson, R.C.3
-
17
-
-
78049413965
-
Fixed-budget kernel recursive least-squares
-
Dallas, TX, USA, Mar.
-
S. Van Vaerenbergh, I. Santamaria, W. Liu, and J. C. Príncipe, "Fixed-budget kernel recursive least-squares," in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Dallas, TX, USA, Mar. 2010, pp. 1882-1885.
-
(2010)
Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP)
, pp. 1882-1885
-
-
Van Vaerenbergh, S.1
Santamaria, I.2
Liu, W.3
Príncipe, J.C.4
-
18
-
-
84877955047
-
Deformed kernel based extreme learning machine
-
Jun.
-
C. Zhang, X. S. Xia, and B. Liu, "Deformed kernel based extreme learning machine," J. Comput., vol. 8, no. 6, pp. 1602-1609, Jun. 2013.
-
(2013)
J. Comput.
, vol.8
, Issue.6
, pp. 1602-1609
-
-
Zhang, C.1
Xia, X.S.2
Liu, B.3
-
19
-
-
84908577889
-
GP-based kernel evolution for L2-regularization networks
-
Beijing, China, Jul.
-
S. Scardapane, D. Comminiello, M. Scarpiniti, and A. Uncini, "GP-based kernel evolution for L2-regularization networks," in Proc. IEEE Congr. Evol. Comput. (CEC), Beijing, China, Jul. 2014, pp. 1674-1681.
-
(2014)
Proc. IEEE Congr. Evol. Comput. (CEC)
, pp. 1674-1681
-
-
Scardapane, S.1
Comminiello, D.2
Scarpiniti, M.3
Uncini, A.4
-
22
-
-
3543096272
-
The kernel recursive least-squares algorithm
-
Aug.
-
Y. Engel, S. Mannor, and R. Meir, "The kernel recursive least-squares algorithm," IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2275-2285, Aug. 2004.
-
(2004)
IEEE Trans. Signal Process.
, vol.52
, Issue.8
, pp. 2275-2285
-
-
Engel, Y.1
Mannor, S.2
Meir, R.3
-
23
-
-
84882874537
-
Quantized kernel recursive least squares algorithm
-
Sep.
-
B. Chen, S. Zhao, P. Zhu, and J. C. Príncipe, "Quantized kernel recursive least squares algorithm," IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 9, pp. 1484-1491, Sep. 2013.
-
(2013)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.24
, Issue.9
, pp. 1484-1491
-
-
Chen, B.1
Zhao, S.2
Zhu, P.3
Príncipe, J.C.4
-
24
-
-
72149098116
-
An information theoretic approach of designing sparse kernel adaptive filters
-
Dec.
-
W. Liu, I. Park, and J. C. Príncipe, "An information theoretic approach of designing sparse kernel adaptive filters," IEEE Trans. Neural Netw., vol. 20, no. 12, pp. 1950-1961, Dec. 2009.
-
(2009)
IEEE Trans. Neural Netw.
, vol.20
, Issue.12
, pp. 1950-1961
-
-
Liu, W.1
Park, I.2
Príncipe, J.C.3
-
25
-
-
84867619886
-
-
Ph.D. Dissertation Univ. Cantabria, Cantabria, Spain, Feb.
-
S. Van Vaerenbergh, "Kernel methods for nonlinear identification, equalization and separation of signals," Ph.D. dissertation, Univ. Cantabria, Cantabria, Spain, Feb. 2010.
-
(2010)
Kernel Methods for Nonlinear Identification, Equalization and Separation of Signals
-
-
Van Vaerenbergh, S.1
-
26
-
-
0033931867
-
Assessing the accuracy of prediction algorithms for classification: An overview
-
May
-
P. Baldi, S. Brunak, Y. Chauvin, C. A. F. Andersen, and H. Nielsen, "Assessing the accuracy of prediction algorithms for classification: An overview," Bioinformatics, vol. 16, no. 5, pp. 412-424, May 2000.
-
(2000)
Bioinformatics
, vol.16
, Issue.5
, pp. 412-424
-
-
Baldi, P.1
Brunak, S.2
Chauvin, Y.3
Andersen, C.A.F.4
Nielsen, H.5
-
27
-
-
68549133155
-
Learning from imbalanced data
-
Sep.
-
H. He and E. A. Garcia, "Learning from imbalanced data," IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263-1284, Sep. 2009.
-
(2009)
IEEE Trans. Knowl. Data Eng.
, vol.21
, Issue.9
, pp. 1263-1284
-
-
He, H.1
Garcia, E.A.2
-
28
-
-
0034159928
-
Generating concise and accurate classification rules for breast cancer diagnosis
-
Mar.
-
R. Setiono, "Generating concise and accurate classification rules for breast cancer diagnosis," Artif. Intell. Med., vol. 18, no. 3, pp. 205-219, Mar. 2000.
-
(2000)
Artif. Intell. Med.
, vol.18
, Issue.3
, pp. 205-219
-
-
Setiono, R.1
-
29
-
-
85032752193
-
Special issue on advances in kernel-based learning for signal processing
-
Jul.
-
K.-R. Müller, T. Adali, K. Fukumizu, J. Principe, and S. Theodoridis, "Special issue on advances in kernel-based learning for signal processing," IEEE Signal Process. Mag., vol. 30, no. 4, pp. 14-15, Jul. 2013.
-
(2013)
IEEE Signal Process. Mag.
, vol.30
, Issue.4
, pp. 14-15
-
-
Müller, K.-R.1
Adali, T.2
Fukumizu, K.3
Principe, J.4
Theodoridis, S.5
-
30
-
-
84878490532
-
Online sequential extreme learning machine in nonstationary environments
-
Sep.
-
Y. Ye, S. Squartini, and F. Piazza, "Online sequential extreme learning machine in nonstationary environments," Neurocomputing, vol. 116, pp. 94-101, Sep. 2012.
-
(2012)
Neurocomputing
, vol.116
, pp. 94-101
-
-
Ye, Y.1
Squartini, S.2
Piazza, F.3
|