메뉴 건너뛰기




Volumn , Issue , 2008, Pages 327-335

Simultaneous tensor subspace selection and clustering: The equivalence of high order svd and k-means clustering

Author keywords

2DSVD; HOSVD; K means clustering

Indexed keywords

2DSVD; CLUSTERING FEATURES; DATA-SETS; FACE IMAGES; FACTORIZATION METHODS; HIGH ORDERS; HOSVD; K-MEANS CLUSTERING; LARGE DATA SETS; NEW RESULTS; NOISE LEVELS; QUALITY ASSESSMENTS; SOCIAL NETWORKS; SUBSPACE SELECTIONS;

EID: 65149091304     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1401890.1401933     Document Type: Conference Paper
Times cited : (56)

References (24)
  • 1
    • 65149101318 scopus 로고    scopus 로고
    • http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
  • 2
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modeling
    • O. Alter, P. O. Brown, and D. Botstein. Singular value decomposition for genome-wide expression data processing and modeling. Proceedings of the National Academy of Sciences, 97:10101-10106, 2000.
    • (2000) Proceedings of the National Academy of Sciences , vol.97 , pp. 10101-10106
    • Alter, O.1    Brown, P.O.2    Botstein, D.3
  • 5
    • 14344257496 scopus 로고    scopus 로고
    • K-means clustering via principal component analysis
    • C. Ding and X. He. K-means clustering via principal component analysis. Proc. of Int'l Conf. Machine Learning, pages 225-232, 2004.
    • (2004) Proc. of Int'l Conf. Machine Learning , pp. 225-232
    • Ding, C.1    He, X.2
  • 7
    • 84880116864 scopus 로고    scopus 로고
    • Two-dimensional singular value decomposition (2dsvd) for 2d maps and images
    • C. Ding and J. Ye. Two-dimensional singular value decomposition (2dsvd) for 2d maps and images. SIAM Int'l Conf. Data Mining, pages 32-43, 2005.
    • (2005) SIAM Int'l Conf. Data Mining , pp. 32-43
    • Ding, C.1    Ye, J.2
  • 8
    • 0000802374 scopus 로고
    • The approximation of one matrix by another of lower rank
    • C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika, 1:183-187, 1936.
    • (1936) Psychometrika , vol.1 , pp. 183-187
    • Eckart, C.1    Young, G.2
  • 9
    • 0035363672 scopus 로고    scopus 로고
    • From few to many: Illumination cone models for face recognition under variable lighting and pose
    • A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intelligence, 23(6):643-660, 2001.
    • (2001) IEEE Trans. Pattern Anal. Mach. Intelligence , vol.23 , Issue.6 , pp. 643-660
    • Georghiades, A.1    Belhumeur, P.2    Kriegman, D.3
  • 10
    • 33845562150 scopus 로고    scopus 로고
    • Dsvd: A tensor-based image compression and recognition method
    • K. Inoue and K. Urahama. Dsvd: A tensor-based image compression and recognition method. IEEE Int. Symp. on Circ. and Syst., pages 6308-311, 2005.
    • (2005) IEEE Int. Symp. on Circ. and Syst , pp. 6308-6311
    • Inoue, K.1    Urahama, K.2
  • 12
    • 0025236073 scopus 로고    scopus 로고
    • Kirby and Sirovich. Application of the kl procedure for the characterization of human faces. IEEE Trans. Pattern Anal. Machine Intell., 12:103-108, 1990.
    • Kirby and Sirovich. Application of the kl procedure for the characterization of human faces. IEEE Trans. Pattern Anal. Machine Intell., 12:103-108, 1990.
  • 13
    • 0002719797 scopus 로고
    • The hungarian method for the assignment problem
    • H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics Quarterly, pages 83-97, 1955.
    • (1955) Naval Research Logistics Quarterly , pp. 83-97
    • Kuhn, H.W.1
  • 14
    • 0034144761 scopus 로고    scopus 로고
    • On the best rank-1 and rank-(r1, r2, . . . ,rn) approximation of higher-order tensors
    • L. D. Lathauwer, B. D. Moor, and J. Vandewalle. On the best rank-1 and rank-(r1, r2, . . . ,rn) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl., 21:1324-1342, 2000.
    • (2000) SIAM J. Matrix Anal. Appl , vol.21 , pp. 1324-1342
    • Lathauwer, L.D.1    Moor, B.D.2    Vandewalle, J.3
  • 15
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proc. IEEE, 86(11):2278-2324, 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 17
    • 0031619277 scopus 로고    scopus 로고
    • C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala. Latent semantic indexing: A probabilistic analysis. In Proceedings of the ACM Conference on Principles of Database Systems, pages 159-168, 1998.
    • C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala. Latent semantic indexing: A probabilistic analysis. In Proceedings of the ACM Conference on Principles of Database Systems, pages 159-168, 1998.
  • 19
    • 0013953617 scopus 로고
    • Some mathematical notes on three-mode factor analysis
    • L. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):279-311, 1966.
    • (1966) Psychometrika , vol.31 , Issue.3 , pp. 279-311
    • Tucker, L.1
  • 23
    • 12244299439 scopus 로고    scopus 로고
    • J. Ye, R. Janardan, and Q. Li. GPCA: An efficient dimension reduction scheme for image compression and retrieval. ACM KDD, pages 354-363, 2004.
    • J. Ye, R. Janardan, and Q. Li. GPCA: An efficient dimension reduction scheme for image compression and retrieval. ACM KDD, pages 354-363, 2004.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.