메뉴 건너뛰기




Volumn , Issue , 2008, Pages 2454-2458

High-dimensional analysis of semidefinite relaxations for sparse principal components

Author keywords

[No Author keywords available]

Indexed keywords

A-PRIORI; COMPUTATIONALLY INEXPENSIVE; CUT-OFF; EIGEN VECTORS; HIGH-DIMENSIONAL; INTERNATIONAL SYMPOSIUM; PRINCIPAL COMPONENTS; PRINCIPAL COMPONENTS ANALYSIS; SAMPLE SIZES; SEMIDEFINITE RELAXATIONS;

EID: 52349090418     PISSN: 21578101     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISIT.2008.4595432     Document Type: Conference Paper
Times cited : (98)

References (14)
  • 1
    • 79951617651 scopus 로고    scopus 로고
    • High-dimensional analysis of semidefinite relaxations for sparse principal components
    • Technical Report 747, UC Berkeley, Department of Statistics, March 2008. Posted at
    • A. Amini and M. J. Wainwright High-dimensional analysis of semidefinite relaxations for sparse principal components. Technical Report 747, UC Berkeley, Department of Statistics, March 2008. Posted at http://arxiv.org/abs/0803.4026.
    • Amini, A.1    Wainwright, M.J.2
  • 4
    • 47849114121 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • E. Candes and T. Tao. The Dantzig selector: Statistical estimation when p is much larger than n. Annals of Statistics, 2006.
    • (2006) Annals of Statistics
    • Candes, E.1    Tao, T.2
  • 5
    • 34548514458 scopus 로고    scopus 로고
    • A direct formulation for sparse PCA using semidefinite programming
    • July
    • A. d'Aspremont, L. El Ghaoui, M. T. Jordan, and G. R. G. Lanckriet. A direct formulation for sparse PCA using semidefinite programming. SIAM Review, 49(3):434-448, July 2007.
    • (2007) SIAM Review , vol.49 , Issue.3 , pp. 434-448
    • d'Aspremont, A.1    El Ghaoui, L.2    Jordan, M.T.3    Lanckriet, G.R.G.4
  • 6
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • April
    • D. Donoho. Compressed sensing. IEEE Trans. Info. Theory, 52(4):1289-1306, April 2006.
    • (2006) IEEE Trans. Info. Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.1
  • 7
    • 0001436319 scopus 로고
    • A limit theorem for the norm of random matrices
    • S. Geman. A limit theorem for the norm of random matrices. Annals of Probability, 8(2):252-261, 1980.
    • (1980) Annals of Probability , vol.8 , Issue.2 , pp. 252-261
    • Geman, S.1
  • 8
    • 0035641726 scopus 로고    scopus 로고
    • On the distribution of the largest eigenvalue in principal components analysis
    • April
    • I. M. Johnstone. On the distribution of the largest eigenvalue in principal components analysis. Annals of Statistics, 29(2):295-327, April 2001.
    • (2001) Annals of Statistics , vol.29 , Issue.2 , pp. 295-327
    • Johnstone, I.M.1
  • 9
    • 36348984112 scopus 로고    scopus 로고
    • Sparse principal components
    • Technical report, Stanford University, July
    • I. M. Johnstone and A. Lu. Sparse principal components. Technical report, Stanford University, July 2004.
    • (2004)
    • Johnstone, I.M.1    Lu, A.2
  • 12
    • 33645712308 scopus 로고    scopus 로고
    • Just relax: Convex programming methods for identifying sparse signals in noise
    • March
    • J. Tropp. Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Tram. Info Theory, 52(3):1030-1051, March 2006.
    • (2006) IEEE Tram. Info Theory , vol.52 , Issue.3 , pp. 1030-1051
    • Tropp, J.1
  • 13
    • 41949129774 scopus 로고    scopus 로고
    • Sharp thresholds for high-dimensional and noisy recovery of sparsity using 11-constrained quadratic programs
    • Technical Report 709, Department of Statistics, UC Berkeley
    • M. J. Wainwright. Sharp thresholds for high-dimensional and noisy recovery of sparsity using 11-constrained quadratic programs. Technical Report 709, Department of Statistics, UC Berkeley, 2006.
    • (2006)
    • Wainwright, M.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.