-
1
-
-
79951617651
-
High-dimensional analysis of semidefinite relaxations for sparse principal components
-
Technical Report 747, UC Berkeley, Department of Statistics, March 2008. Posted at
-
A. Amini and M. J. Wainwright High-dimensional analysis of semidefinite relaxations for sparse principal components. Technical Report 747, UC Berkeley, Department of Statistics, March 2008. Posted at http://arxiv.org/abs/0803.4026.
-
-
-
Amini, A.1
Wainwright, M.J.2
-
4
-
-
47849114121
-
The Dantzig selector: Statistical estimation when p is much larger than n
-
E. Candes and T. Tao. The Dantzig selector: Statistical estimation when p is much larger than n. Annals of Statistics, 2006.
-
(2006)
Annals of Statistics
-
-
Candes, E.1
Tao, T.2
-
5
-
-
34548514458
-
A direct formulation for sparse PCA using semidefinite programming
-
July
-
A. d'Aspremont, L. El Ghaoui, M. T. Jordan, and G. R. G. Lanckriet. A direct formulation for sparse PCA using semidefinite programming. SIAM Review, 49(3):434-448, July 2007.
-
(2007)
SIAM Review
, vol.49
, Issue.3
, pp. 434-448
-
-
d'Aspremont, A.1
El Ghaoui, L.2
Jordan, M.T.3
Lanckriet, G.R.G.4
-
6
-
-
33645712892
-
Compressed sensing
-
April
-
D. Donoho. Compressed sensing. IEEE Trans. Info. Theory, 52(4):1289-1306, April 2006.
-
(2006)
IEEE Trans. Info. Theory
, vol.52
, Issue.4
, pp. 1289-1306
-
-
Donoho, D.1
-
7
-
-
0001436319
-
A limit theorem for the norm of random matrices
-
S. Geman. A limit theorem for the norm of random matrices. Annals of Probability, 8(2):252-261, 1980.
-
(1980)
Annals of Probability
, vol.8
, Issue.2
, pp. 252-261
-
-
Geman, S.1
-
8
-
-
0035641726
-
On the distribution of the largest eigenvalue in principal components analysis
-
April
-
I. M. Johnstone. On the distribution of the largest eigenvalue in principal components analysis. Annals of Statistics, 29(2):295-327, April 2001.
-
(2001)
Annals of Statistics
, vol.29
, Issue.2
, pp. 295-327
-
-
Johnstone, I.M.1
-
9
-
-
36348984112
-
Sparse principal components
-
Technical report, Stanford University, July
-
I. M. Johnstone and A. Lu. Sparse principal components. Technical report, Stanford University, July 2004.
-
(2004)
-
-
Johnstone, I.M.1
Lu, A.2
-
11
-
-
41549168797
-
Spectral bounds for sparse PCA: Exact and greedy algorithms
-
Vancouver, Canada, December
-
B. Moghaddam, Y. Weiss, and S. Avidan. Spectral bounds for sparse PCA: Exact and greedy algorithms. In Neural Information Processing Systems (NIPS), Vancouver, Canada, December 2005.
-
(2005)
Neural Information Processing Systems (NIPS)
-
-
Moghaddam, B.1
Weiss, Y.2
Avidan, S.3
-
12
-
-
33645712308
-
Just relax: Convex programming methods for identifying sparse signals in noise
-
March
-
J. Tropp. Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Tram. Info Theory, 52(3):1030-1051, March 2006.
-
(2006)
IEEE Tram. Info Theory
, vol.52
, Issue.3
, pp. 1030-1051
-
-
Tropp, J.1
-
13
-
-
41949129774
-
Sharp thresholds for high-dimensional and noisy recovery of sparsity using 11-constrained quadratic programs
-
Technical Report 709, Department of Statistics, UC Berkeley
-
M. J. Wainwright. Sharp thresholds for high-dimensional and noisy recovery of sparsity using 11-constrained quadratic programs. Technical Report 709, Department of Statistics, UC Berkeley, 2006.
-
(2006)
-
-
Wainwright, M.J.1
-
14
-
-
33745309913
-
Sparse principal component analysis
-
H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15(2):265-286, 2004.
-
(2004)
Journal of Computational and Graphical Statistics
, vol.15
, Issue.2
, pp. 265-286
-
-
Zou, H.1
Hastie, T.2
Tibshirani, R.3
|