메뉴 건너뛰기




Volumn 12, Issue 6, 2011, Pages 714-722

Principal component analysis based Methods in bioinformatics studies

Author keywords

Bioinformatics methodologies; Dimension reduction; Gene expression; Principal component analysis

Indexed keywords

ARTICLE; BIOLOGY; GENE EXPRESSION PROFILING; GENOMICS; METHODOLOGY; PRINCIPAL COMPONENT ANALYSIS; SINGLE NUCLEOTIDE POLYMORPHISM;

EID: 80052160144     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbq090     Document Type: Article
Times cited : (174)

References (30)
  • 2
    • 49949090353 scopus 로고    scopus 로고
    • Penalized feature selection and classification in bioinformatics
    • Ma S, Huang J. Penalized feature selection and classification in bioinformatics. Briefings in Bioinformatics 2008;9:392-403.
    • (2008) Briefings in Bioinformatics , vol.9 , pp. 392-403
    • Ma, S.1    Huang, J.2
  • 7
    • 19544391863 scopus 로고    scopus 로고
    • A web-based tool for principal component and significance analysis of microarray data
    • Sharov AA, Dudekula DB, Ko MSH. A web-based tool for principal component and significance analysis of microarray data. Bioinformatics 2005;21:2548-9.
    • (2005) Bioinformatics , vol.21 , pp. 2548-2549
    • Sharov, A.A.1    Dudekula, D.B.2    Ko, M.S.H.3
  • 10
    • 25444533045 scopus 로고    scopus 로고
    • Visualization methods for statistical analysis of microarray clusters
    • Hibbs MA, Dirksen NC, Li K, et al. Visualization methods for statistical analysis of microarray clusters. BMC Bioinformatics 2005;6:115.
    • (2005) BMC Bioinformatics , vol.6 , pp. 115
    • Hibbs, M.A.1    Dirksen, N.C.2    Li, K.3
  • 11
    • 0034800371 scopus 로고    scopus 로고
    • Principal component analysis for clustering gene expression data
    • Yeung KY, Ruzzo WL. Principal component analysis for clustering gene expression data. Bioinformatics 2001;17: 763-74.
    • (2001) Bioinformatics , vol.17 , pp. 763-774
    • Yeung, K.Y.1    Ruzzo, W.L.2
  • 12
    • 63549098588 scopus 로고    scopus 로고
    • Identification of differential gene pathways with principal component analysis
    • Ma S, Kosorok MR. Identification of differential gene pathways with principal component analysis. Bioinformatics 2009; 25:882-9.
    • (2009) Bioinformatics , vol.25 , pp. 882-889
    • Ma, S.1    Kosorok, M.R.2
  • 13
    • 2542430932 scopus 로고    scopus 로고
    • Singular value decomposition and principal component analysis
    • Berrar DP, Dubitzky W, Granzow M, (eds). Norwell, MA: Kluwer
    • Wall ME, Rechtsteiner A, Rocha LM. Singular value decomposition and principal component analysis. In: Berrar DP, Dubitzky W, Granzow M, (eds). A Practical Approach toMicroarray Data Analysis. Norwell, MA: Kluwer, 2003.
    • (2003) A Practical Approach toMicroarray Data Analysis
    • Wall, M.E.1    Rechtsteiner, A.2    Rocha, L.M.3
  • 14
    • 41449085571 scopus 로고    scopus 로고
    • Eigengene networks for studying the relationships between co-expression modules
    • Langfelder P, Horvath S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol 2007;1:54.
    • (2007) BMC Syst Biol , vol.1 , pp. 54
    • Langfelder, P.1    Horvath, S.2
  • 15
    • 53149122391 scopus 로고    scopus 로고
    • Principal component analysis in linear regression survival model with microarray data
    • Ma S. Principal component analysis in linear regression survival model with microarray data. J. Data Sci 2007;5:183-98.
    • (2007) J. Data Sci. , vol.5 , pp. 183-198
    • Ma, S.1
  • 16
    • 33645092633 scopus 로고    scopus 로고
    • Additive risk models for survival data with high dimensional covariates
    • Ma S, Kosorok MR, Fine JP. Additive risk models for survival data with high dimensional covariates. Biometrics 2006; 62:202-10.
    • (2006) Biometrics , vol.62 , pp. 202-210
    • Ma, S.1    Kosorok, M.R.2    Fine, J.P.3
  • 17
    • 19344375744 scopus 로고    scopus 로고
    • Semi-supervised methods to predict patient survival from gene expression data
    • Bair E, Tishirani R. Semi-supervised methods to predict patient survival from gene expression data. PLoS Biol 2004;2:511-22.
    • (2004) PLoS Biol , vol.2 , pp. 511-522
    • Bair, E.1    Tishirani, R.2
  • 18
    • 33645527646 scopus 로고    scopus 로고
    • Prediction by supervised principal components
    • Bair E, Hastie T, Dabashis P, et al. Prediction by supervised principal components. J Acous SocAm 2006;102:119-37.
    • (2006) J Acous SocAm , vol.102 , pp. 119-137
    • Bair, E.1    Hastie, T.2    Dabashis, P.3
  • 19
    • 77955067099 scopus 로고    scopus 로고
    • Weighted area under the receiver operating characteristic curve and its application to gene selection
    • Li J, Fine J. Weighted area under the receiver operating characteristic curve and its application to gene selection. JRSSC 2010;59:673-92.
    • (2010) JRSSC , vol.59 , pp. 673-692
    • Li, J.1    Fine, J.2
  • 20
    • 77958611364 scopus 로고    scopus 로고
    • Pathway-based analysis for genome-wide association studies using supervised principal components
    • Chen X, Wang L, Hu B, et al. Pathway-based analysis for genome-wide association studies using supervised principal components. Genetic Epidemiol 2010;34:716-24.
    • (2010) Genetic Epidemiol , vol.34 , pp. 716-724
    • Chen, X.1    Wang, L.2    Hu, B.3
  • 21
    • 54949127956 scopus 로고    scopus 로고
    • Supervised principal component analysis for gene set enrichment of microarray data with continuous or survival outcomes
    • Chen X, Wang L, Smith JD, et al. Supervised principal component analysis for gene set enrichment of microarray data with continuous or survival outcomes. Bioinformatics 2008;24:2474-81.
    • (2008) Bioinformatics , vol.24 , pp. 2474-2481
    • Chen, X.1    Wang, L.2    Smith, J.D.3
  • 24
    • 0037339264 scopus 로고    scopus 로고
    • Clustering of time-course gene expression data using a mixed-effects model with B-splines
    • Luan Y, Li H. Clustering of time-course gene expression data using a mixed-effects model with B-splines. Bioinformatics 2003;19:474-82.
    • (2003) Bioinformatics , vol.19 , pp. 474-482
    • Luan, Y.1    Li, H.2
  • 26
    • 34447649358 scopus 로고    scopus 로고
    • Clustering of time-course gene expression data using functional data analysis
    • Song JJ, Lee HJ, Morris JS, et al. Clustering of time-course gene expression data using functional data analysis. Comput Biol Chem 2007;31:265-74.
    • (2007) Comput Biol Chem , vol.31 , pp. 265-274
    • Song, J.J.1    Lee, H.J.2    Morris, J.S.3
  • 27
    • 70349570737 scopus 로고    scopus 로고
    • Weighted gene co-expression network analysis of the peripheral blood from amyotrophic lateral sclerosis patients
    • Saris CG, Horvath S, van Vught PW, et al. Weighted gene co-expression network analysis of the peripheral blood from amyotrophic lateral sclerosis patients. BMC Genomics 2009; 10:405.
    • (2009) BMC Genomics , vol.10 , pp. 405
    • Saris, C.G.1    Horvath, S.2    van Vught, P.W.3
  • 28
    • 0020998698 scopus 로고
    • On using principal components before separating a mixture of two multivariate normal distributions
    • Chang WC. On using principal components before separating a mixture of two multivariate normal distributions. Appl Stat 1983;32:267-75.
    • (1983) Appl Stat , vol.32 , pp. 267-275
    • Chang, W.C.1
  • 29
    • 62349112885 scopus 로고    scopus 로고
    • Covariance regularization by thresholding
    • Bickel PJ, Levina E. Covariance regularization by thresholding. Ann Stat 2008;36:2577-604.
    • (2008) Ann Stat , vol.36 , pp. 2577-2604
    • Bickel, P.J.1    Levina, E.2
  • 30
    • 50449087596 scopus 로고    scopus 로고
    • Marginal asymptotics for "large p, small n" paradigm: with applications to microarray data
    • Kosorok MR, Ma S. Marginal asymptotics for "large p, small n" paradigm: with applications to microarray data. Ann Stat 2007;35:1456-86.
    • (2007) Ann Stat , vol.35 , pp. 1456-1486
    • Kosorok, M.R.1    Ma, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.