메뉴 건너뛰기




Volumn 98, Issue 4, 2011, Pages 807-820

Sparse estimation of a covariance matrix

Author keywords

Concave convex procedure; Covariance graph; Covariance matrix; Generalized gradient descent; Lasso; Majorization minimization; Regularization; Sparsity

Indexed keywords


EID: 82255195996     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/asr054     Document Type: Article
Times cited : (295)

References (32)
  • 1
    • 15244346000 scopus 로고    scopus 로고
    • The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems
    • DOI 10.1007/s10479-004-5022-1
    • AN, L. & TAO, P. (2005). The dc (difference of convex functions) programming and dca revisited with dc models of real world nonconvex optimization problems. Ann. Oper. Res. 133, 23-46. (Pubitemid 40389738)
    • (2005) Annals of Operations Research , vol.133 , Issue.1-4 , pp. 23-46
    • An, L.T.H.1    Tao, P.D.2
  • 3
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • BANERJEE, O., EL GHAOUI, L. E. & D'ASPREMONT, A. (2008). Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J.Mach. Learn. Res. 9, 485-516. (Pubitemid 351469014)
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    D'Aspremont, A.3
  • 4
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • BECK, A. & TEBOULLE, M. (2009). A fast iterative shrinkage- thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2, 183-202.
    • (2009) SIAM J. Imag. Sci. , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 6
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • BOYD, S., PARIKH, N., CHU, E., PELEATO, B. & ECKSTEIN, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundat. Trends Mach. Learn. 3, 1-124.
    • (2011) Foundat. Trends Mach. Learn. , vol.3 , pp. 1-124
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 7
    • 0034710924 scopus 로고    scopus 로고
    • Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks
    • BUTTE, A. J., TAMAYO, P., SLONIM, D., GOLUB, T. R. & KOHANE, I. S. (2000). Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc. Nat. Acad. Sci. U.S.A. 97, 12182-6.
    • (2000) Proc. Nat. Acad. Sci. U.S.A. , vol.97 , pp. 12182-6
    • Butte, A.J.1    Tamayo, P.2    Slonim, D.3    Golub, T.R.4    Kohane, I.S.5
  • 8
    • 33947153898 scopus 로고    scopus 로고
    • Estimation of a covariance matrix with zeros
    • DOI 10.1093/biomet/asm007
    • CHAUDHURI, S., DRTON, M. & RICHARDSON, T. S. (2007). Estimation of a covariance matrix with zeros. Biometrika 94, 199-216. (Pubitemid 46410716)
    • (2007) Biometrika , vol.94 , Issue.1 , pp. 199-216
    • Chaudhuri, S.1    Drton, M.2    Richardson, T.S.3
  • 9
    • 70349291078 scopus 로고    scopus 로고
    • Multidimensional scaling using majorization: SMACOF in R
    • DE LEEUW, J. & MAIR, P. (2009). Multidimensional scaling using majorization: SMACOF in R. J. Statist. Software 31, 1-30.
    • (2009) J. Statist. Software , vol.31 , pp. 1-30
    • De Leeuw, J.1    Mair, P.2
  • 10
    • 0001038826 scopus 로고
    • Covariance selection
    • DEMPSTER, A. P. (1972). Covariance selection. Biometrics 28, 157-75.
    • (1972) Biometrics , vol.28 , pp. 157-75
    • Dempster, A.P.1
  • 11
    • 44649199301 scopus 로고    scopus 로고
    • Graphical methods for efficient likelihood inference in Gaussian covariance models
    • DRTON, M. & RICHARDSON, T. S. (2008). Graphical methods for efficient likelihood inference in Gaussian covariance models. J. Mach. Learn. Res. 9, 893-914.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 893-914
    • Drton, M.1    Richardson, T.S.2
  • 12
    • 0142215333 scopus 로고    scopus 로고
    • Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices
    • Institute of Electrical and Electronics Engineers
    • FAZEL, M., HINDI, H. & BOYD, S. (2003). Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices. In Am. Contr. Conf., 2003. Proc. 2003, vol. 3. Institute of Electrical and Electronics Engineers.
    • (2003) Am. Contr. Conf., 2003. Proc. 2003 , vol.3
    • Fazel, M.1    Hindi, H.2    Boyd, S.3
  • 13
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • FRIEDMAN, J., HASTIE, T. J. & TIBSHIRANI, R. J. (2007). Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9, 432-41.
    • (2007) Biostatistics , vol.9 , pp. 432-41
    • Friedman, J.1    Hastie, T.J.2    Tibshirani, R.J.3
  • 15
    • 33644986127 scopus 로고    scopus 로고
    • Covariance matrix selection and estimation via penalized normal likelihood
    • HUANG, J., LIU, N., POURAHMADI, M. & LIU, L. (2006). Covariance matrix selection and estimation via penalized normal likelihood. Biometrika 93, 85.
    • (2006) Biometrika , vol.93 , pp. 85
    • Huang, J.1    Liu, N.2    Pourahmadi, M.3    Liu, L.4
  • 16
    • 26444617168 scopus 로고    scopus 로고
    • Variable selection using MM algorithms
    • DOI 10.1214/009053605000000200
    • HUNTER, D. R. & LI, R. (2005). Variable selection using MM algorithms. Ann. Statist. 33, 1617-42. (Pubitemid 41423982)
    • (2005) Annals of Statistics , vol.33 , Issue.4 , pp. 1617-1642
    • Hunter, D.R.1    Li, R.2
  • 17
    • 82255187067 scopus 로고    scopus 로고
    • Wishart distributions for decomposable covariance graph models
    • KHARE, K. & RAJARATNAM, B. (2011).Wishart distributions for decomposable covariance graph models. Ann. Statist. 39, 514-55.
    • (2011) Ann. Statist. , vol.39 , pp. 514-55
    • Khare, K.1    Rajaratnam, B.2
  • 18
    • 73949122606 scopus 로고    scopus 로고
    • Sparsistency and rates of convergence in large covariance matrix estimation
    • LAM, C. & FAN, J. (2009). Sparsistency and rates of convergence in large covariance matrix estimation. Ann. Statist. 37, 4254-78.
    • (2009) Ann. Statist. , vol.37 , pp. 4254-78
    • Lam, C.1    Fan, J.2
  • 19
    • 1342322973 scopus 로고    scopus 로고
    • New York: Springer
    • LANGE, K. (2004). Optimization. New York: Springer.
    • (2004) Optimization
    • Lange, K.1
  • 20
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • DOI 10.1214/009053606000000281
    • MEINSHAUSEN, N. & BüHLMANN, P. (2006). High dimensional graphs and variable selection with the lasso. Ann. Statist. 34, 1436-62. (Pubitemid 44231168)
    • (2006) Annals of Statistics , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 21
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • DOI 10.1007/s10107-004-0552-5
    • NESTEROV, Y. (2005). Smooth minimization of non-smooth functions. Math. Prog. 103, 127-52. (Pubitemid 40537674)
    • (2005) Mathematical Programming , vol.103 , Issue.1 , pp. 127-152
    • Nesterov, Yu.1
  • 22
    • 62349119614 scopus 로고    scopus 로고
    • Sparse permutation invariant covariance estimation
    • ROTHMAN, A., LEVINA, E. & ZHU, J. (2008). Sparse permutation invariant covariance estimation. Electron. J. Statist. 2, 494-515.
    • (2008) Electron. J. Statist. , vol.2 , pp. 494-515
    • Rothman, A.1    Levina, E.2    Zhu, J.3
  • 23
    • 77955901795 scopus 로고    scopus 로고
    • A new approach to Cholesky-based covariance regularization in high dimensions
    • ROTHMAN, A., LEVINA, E. & ZHU, J. (2010). A new approach to Cholesky-based covariance regularization in high dimensions. Biometrika 97, 539.
    • (2010) Biometrika , vol.97 , pp. 539
    • Rothman, A.1    Levina, E.2    Zhu, J.3
  • 24
    • 70350337963 scopus 로고    scopus 로고
    • Generalized thresholding of large covariance matrices
    • ROTHMAN, A. J., LEVINA, E. & ZHU, J. (2009). Generalized thresholding of large covariance matrices. J. Am. Statist. Assoc. 104, 177-86.
    • (2009) J. Am. Statist. Assoc. , vol.104 , pp. 177-86
    • Rothman, A.J.1    Levina, E.2    Zhu, J.3
  • 25
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • DOI 10.1126/science.1105809
    • SACHS, K., PEREZ, O., PE'ER, D., LAUFFENBURGER, D. & NOLAN, G. (2005). Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523-9. (Pubitemid 40570578)
    • (2005) Science , vol.308 , Issue.5721 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 26
    • 0001629248 scopus 로고
    • The smallest eigenvalue of a large dimensional Wishart matrix
    • SILVERSTEIN, J. (1985). The smallest eigenvalue of a large dimensional Wishart matrix. Ann. Prob. 13, 1364-8.
    • (1985) Ann. Prob. , vol.13 , pp. 1364-8
    • Silverstein, J.1
  • 27
    • 78149477774 scopus 로고    scopus 로고
    • On the convergence of the concave-convex procedure
    • Ed. Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams & A. Culotta
    • SRIPERUMBUDUR, B. & LANCKRIET, G. (2009). On the convergence of the concave-convex procedure. In Advances in Neural Information Processing Systems, 22. Ed. Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams & A. Culotta, pp. 1759-67.
    • (2009) Advances in Neural Information Processing Systems, 22 , pp. 1759-67
    • Sriperumbudur, B.1    Lanckriet, G.2
  • 28
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58, 267-88.
    • (1996) J. R. Statist. Soc. B , vol.58 , pp. 267-88
    • Tibshirani, R.1
  • 29
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • DOI 10.1093/biomet/asm018
    • YUAN, M. & LIN, Y. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika 94, 19-35. (Pubitemid 46410725)
    • (2007) Biometrika , vol.94 , Issue.1 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 30
    • 0037686659 scopus 로고    scopus 로고
    • The concave-convex procedure
    • DOI 10.1162/08997660360581958
    • YUILLE, A. L. & RANGARAJAN, A. (2003). The concave-convex procedure. Neural Comp. 15, 915-36. (Pubitemid 37049812)
    • (2003) Neural Computation , vol.15 , Issue.4 , pp. 915-936
    • Yuille, A.L.1    Rangarajan, A.2
  • 31
    • 77951191949 scopus 로고    scopus 로고
    • Analysis of multi-stage convex relaxation for sparse regularization
    • ZHANG, T. (2010). Analysis of multi-stage convex relaxation for sparse regularization. J. Mach. Learn. Res. 11, 1081-107.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 1081-107
    • Zhang, T.1
  • 32
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • ZOU, H. (2006). The adaptive lasso and its oracle properties. J. Am. Statist. Assoc. 101, 1418-29.
    • (2006) J. Am. Statist. Assoc. , vol.101 , pp. 1418-29
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.