-
1
-
-
15244346000
-
The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems
-
DOI 10.1007/s10479-004-5022-1
-
AN, L. & TAO, P. (2005). The dc (difference of convex functions) programming and dca revisited with dc models of real world nonconvex optimization problems. Ann. Oper. Res. 133, 23-46. (Pubitemid 40389738)
-
(2005)
Annals of Operations Research
, vol.133
, Issue.1-4
, pp. 23-46
-
-
An, L.T.H.1
Tao, P.D.2
-
2
-
-
34250779439
-
A dc-programming algorithm for kernel selection
-
New York: Association for Computing Machinery
-
ARGYRIOU, A.,HAUSER, R.,MICCHELLI, C. & PONTIL, M. (2006). A dc-programming algorithm for kernel selection. In Proc. 23rd Int. Conf. Mach. Learn. New York: Association for Computing Machinery.
-
(2006)
Proc. 23rd Int. Conf. Mach. Learn
-
-
Argyriou, A.1
Hauser, R.2
MicChelli, C.3
Pontil, M.4
-
3
-
-
41549101939
-
Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
-
BANERJEE, O., EL GHAOUI, L. E. & D'ASPREMONT, A. (2008). Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J.Mach. Learn. Res. 9, 485-516. (Pubitemid 351469014)
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 485-516
-
-
Banerjee, O.1
El Ghaoui, L.2
D'Aspremont, A.3
-
4
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
BECK, A. & TEBOULLE, M. (2009). A fast iterative shrinkage- thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2, 183-202.
-
(2009)
SIAM J. Imag. Sci.
, vol.2
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
6
-
-
80051762104
-
Distributed optimization and statistical learning via the alternating direction method of multipliers
-
BOYD, S., PARIKH, N., CHU, E., PELEATO, B. & ECKSTEIN, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundat. Trends Mach. Learn. 3, 1-124.
-
(2011)
Foundat. Trends Mach. Learn.
, vol.3
, pp. 1-124
-
-
Boyd, S.1
Parikh, N.2
Chu, E.3
Peleato, B.4
Eckstein, J.5
-
7
-
-
0034710924
-
Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks
-
BUTTE, A. J., TAMAYO, P., SLONIM, D., GOLUB, T. R. & KOHANE, I. S. (2000). Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc. Nat. Acad. Sci. U.S.A. 97, 12182-6.
-
(2000)
Proc. Nat. Acad. Sci. U.S.A.
, vol.97
, pp. 12182-6
-
-
Butte, A.J.1
Tamayo, P.2
Slonim, D.3
Golub, T.R.4
Kohane, I.S.5
-
8
-
-
33947153898
-
Estimation of a covariance matrix with zeros
-
DOI 10.1093/biomet/asm007
-
CHAUDHURI, S., DRTON, M. & RICHARDSON, T. S. (2007). Estimation of a covariance matrix with zeros. Biometrika 94, 199-216. (Pubitemid 46410716)
-
(2007)
Biometrika
, vol.94
, Issue.1
, pp. 199-216
-
-
Chaudhuri, S.1
Drton, M.2
Richardson, T.S.3
-
9
-
-
70349291078
-
Multidimensional scaling using majorization: SMACOF in R
-
DE LEEUW, J. & MAIR, P. (2009). Multidimensional scaling using majorization: SMACOF in R. J. Statist. Software 31, 1-30.
-
(2009)
J. Statist. Software
, vol.31
, pp. 1-30
-
-
De Leeuw, J.1
Mair, P.2
-
10
-
-
0001038826
-
Covariance selection
-
DEMPSTER, A. P. (1972). Covariance selection. Biometrics 28, 157-75.
-
(1972)
Biometrics
, vol.28
, pp. 157-75
-
-
Dempster, A.P.1
-
11
-
-
44649199301
-
Graphical methods for efficient likelihood inference in Gaussian covariance models
-
DRTON, M. & RICHARDSON, T. S. (2008). Graphical methods for efficient likelihood inference in Gaussian covariance models. J. Mach. Learn. Res. 9, 893-914.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 893-914
-
-
Drton, M.1
Richardson, T.S.2
-
12
-
-
0142215333
-
Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices
-
Institute of Electrical and Electronics Engineers
-
FAZEL, M., HINDI, H. & BOYD, S. (2003). Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices. In Am. Contr. Conf., 2003. Proc. 2003, vol. 3. Institute of Electrical and Electronics Engineers.
-
(2003)
Am. Contr. Conf., 2003. Proc. 2003
, vol.3
-
-
Fazel, M.1
Hindi, H.2
Boyd, S.3
-
13
-
-
45849134070
-
Sparse inverse covariance estimation with the graphical lasso
-
FRIEDMAN, J., HASTIE, T. J. & TIBSHIRANI, R. J. (2007). Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9, 432-41.
-
(2007)
Biostatistics
, vol.9
, pp. 432-41
-
-
Friedman, J.1
Hastie, T.J.2
Tibshirani, R.J.3
-
15
-
-
33644986127
-
Covariance matrix selection and estimation via penalized normal likelihood
-
HUANG, J., LIU, N., POURAHMADI, M. & LIU, L. (2006). Covariance matrix selection and estimation via penalized normal likelihood. Biometrika 93, 85.
-
(2006)
Biometrika
, vol.93
, pp. 85
-
-
Huang, J.1
Liu, N.2
Pourahmadi, M.3
Liu, L.4
-
16
-
-
26444617168
-
Variable selection using MM algorithms
-
DOI 10.1214/009053605000000200
-
HUNTER, D. R. & LI, R. (2005). Variable selection using MM algorithms. Ann. Statist. 33, 1617-42. (Pubitemid 41423982)
-
(2005)
Annals of Statistics
, vol.33
, Issue.4
, pp. 1617-1642
-
-
Hunter, D.R.1
Li, R.2
-
17
-
-
82255187067
-
Wishart distributions for decomposable covariance graph models
-
KHARE, K. & RAJARATNAM, B. (2011).Wishart distributions for decomposable covariance graph models. Ann. Statist. 39, 514-55.
-
(2011)
Ann. Statist.
, vol.39
, pp. 514-55
-
-
Khare, K.1
Rajaratnam, B.2
-
18
-
-
73949122606
-
Sparsistency and rates of convergence in large covariance matrix estimation
-
LAM, C. & FAN, J. (2009). Sparsistency and rates of convergence in large covariance matrix estimation. Ann. Statist. 37, 4254-78.
-
(2009)
Ann. Statist.
, vol.37
, pp. 4254-78
-
-
Lam, C.1
Fan, J.2
-
19
-
-
1342322973
-
-
New York: Springer
-
LANGE, K. (2004). Optimization. New York: Springer.
-
(2004)
Optimization
-
-
Lange, K.1
-
20
-
-
33747163541
-
High-dimensional graphs and variable selection with the Lasso
-
DOI 10.1214/009053606000000281
-
MEINSHAUSEN, N. & BüHLMANN, P. (2006). High dimensional graphs and variable selection with the lasso. Ann. Statist. 34, 1436-62. (Pubitemid 44231168)
-
(2006)
Annals of Statistics
, vol.34
, Issue.3
, pp. 1436-1462
-
-
Meinshausen, N.1
Buhlmann, P.2
-
21
-
-
17444406259
-
Smooth minimization of non-smooth functions
-
DOI 10.1007/s10107-004-0552-5
-
NESTEROV, Y. (2005). Smooth minimization of non-smooth functions. Math. Prog. 103, 127-52. (Pubitemid 40537674)
-
(2005)
Mathematical Programming
, vol.103
, Issue.1
, pp. 127-152
-
-
Nesterov, Yu.1
-
22
-
-
62349119614
-
Sparse permutation invariant covariance estimation
-
ROTHMAN, A., LEVINA, E. & ZHU, J. (2008). Sparse permutation invariant covariance estimation. Electron. J. Statist. 2, 494-515.
-
(2008)
Electron. J. Statist.
, vol.2
, pp. 494-515
-
-
Rothman, A.1
Levina, E.2
Zhu, J.3
-
23
-
-
77955901795
-
A new approach to Cholesky-based covariance regularization in high dimensions
-
ROTHMAN, A., LEVINA, E. & ZHU, J. (2010). A new approach to Cholesky-based covariance regularization in high dimensions. Biometrika 97, 539.
-
(2010)
Biometrika
, vol.97
, pp. 539
-
-
Rothman, A.1
Levina, E.2
Zhu, J.3
-
24
-
-
70350337963
-
Generalized thresholding of large covariance matrices
-
ROTHMAN, A. J., LEVINA, E. & ZHU, J. (2009). Generalized thresholding of large covariance matrices. J. Am. Statist. Assoc. 104, 177-86.
-
(2009)
J. Am. Statist. Assoc.
, vol.104
, pp. 177-86
-
-
Rothman, A.J.1
Levina, E.2
Zhu, J.3
-
25
-
-
17644427718
-
Causal protein-signaling networks derived from multiparameter single-cell data
-
DOI 10.1126/science.1105809
-
SACHS, K., PEREZ, O., PE'ER, D., LAUFFENBURGER, D. & NOLAN, G. (2005). Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523-9. (Pubitemid 40570578)
-
(2005)
Science
, vol.308
, Issue.5721
, pp. 523-529
-
-
Sachs, K.1
Perez, O.2
Pe'er, D.3
Lauffenburger, D.A.4
Nolan, G.P.5
-
26
-
-
0001629248
-
The smallest eigenvalue of a large dimensional Wishart matrix
-
SILVERSTEIN, J. (1985). The smallest eigenvalue of a large dimensional Wishart matrix. Ann. Prob. 13, 1364-8.
-
(1985)
Ann. Prob.
, vol.13
, pp. 1364-8
-
-
Silverstein, J.1
-
27
-
-
78149477774
-
On the convergence of the concave-convex procedure
-
Ed. Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams & A. Culotta
-
SRIPERUMBUDUR, B. & LANCKRIET, G. (2009). On the convergence of the concave-convex procedure. In Advances in Neural Information Processing Systems, 22. Ed. Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams & A. Culotta, pp. 1759-67.
-
(2009)
Advances in Neural Information Processing Systems, 22
, pp. 1759-67
-
-
Sriperumbudur, B.1
Lanckriet, G.2
-
28
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58, 267-88.
-
(1996)
J. R. Statist. Soc. B
, vol.58
, pp. 267-88
-
-
Tibshirani, R.1
-
29
-
-
33947115409
-
Model selection and estimation in the Gaussian graphical model
-
DOI 10.1093/biomet/asm018
-
YUAN, M. & LIN, Y. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika 94, 19-35. (Pubitemid 46410725)
-
(2007)
Biometrika
, vol.94
, Issue.1
, pp. 19-35
-
-
Yuan, M.1
Lin, Y.2
-
30
-
-
0037686659
-
The concave-convex procedure
-
DOI 10.1162/08997660360581958
-
YUILLE, A. L. & RANGARAJAN, A. (2003). The concave-convex procedure. Neural Comp. 15, 915-36. (Pubitemid 37049812)
-
(2003)
Neural Computation
, vol.15
, Issue.4
, pp. 915-936
-
-
Yuille, A.L.1
Rangarajan, A.2
-
31
-
-
77951191949
-
Analysis of multi-stage convex relaxation for sparse regularization
-
ZHANG, T. (2010). Analysis of multi-stage convex relaxation for sparse regularization. J. Mach. Learn. Res. 11, 1081-107.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 1081-107
-
-
Zhang, T.1
-
32
-
-
33846114377
-
The adaptive lasso and its oracle properties
-
ZOU, H. (2006). The adaptive lasso and its oracle properties. J. Am. Statist. Assoc. 101, 1418-29.
-
(2006)
J. Am. Statist. Assoc.
, vol.101
, pp. 1418-29
-
-
Zou, H.1
|