메뉴 건너뛰기




Volumn 383, Issue , 2015, Pages 12-19

SFM: A novel sequence-based fusion method for disease genes identification and prioritization

Author keywords

Classification; Disease gene; Fusion method; Physicochemical properties of amino acid; Protein

Indexed keywords

AMINO ACID; CLASSIFICATION; DISEASE; GENE; PHYSICOCHEMICAL PROPERTY; PROTEIN; SUPPORT VECTOR MACHINE;

EID: 84939507864     PISSN: 00225193     EISSN: 10958541     Source Type: Journal    
DOI: 10.1016/j.jtbi.2015.07.010     Document Type: Article
Times cited : (13)

References (46)
  • 1
    • 33646568805 scopus 로고    scopus 로고
    • Gene prioritization through genomic data fusion
    • Aerts S., et al. Gene prioritization through genomic data fusion. Nat. Biotechnol. 2006, 24:537-544.
    • (2006) Nat. Biotechnol. , vol.24 , pp. 537-544
    • Aerts, S.1
  • 2
    • 41849139980 scopus 로고    scopus 로고
    • Prediction of human disease genes by human-mouse conserved coexpression analysis
    • Ala U., et al. Prediction of human disease genes by human-mouse conserved coexpression analysis. PLoS Comput. Biol. 2008, 4:e1000043.
    • (2008) PLoS Comput. Biol. , vol.4 , pp. e1000043
    • Ala, U.1
  • 3
    • 0042622243 scopus 로고    scopus 로고
    • SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence
    • Cai C.Z., et al. SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res. 2003, 31:3692-3697.
    • (2003) Nucleic Acids Res. , vol.31 , pp. 3692-3697
    • Cai, C.Z.1
  • 4
    • 1442275650 scopus 로고    scopus 로고
    • Enzyme family classification by support vector machines
    • Cai C.Z., et al. Enzyme family classification by support vector machines. Proteins 2004, 55:66-76.
    • (2004) Proteins , vol.55 , pp. 66-76
    • Cai, C.Z.1
  • 5
    • 0020371598 scopus 로고
    • The structural dependence of amino acid hydrophobicity parameters
    • Charton M., Charton B.I. The structural dependence of amino acid hydrophobicity parameters. J. Theor. Biol. 1982, 99:629-644.
    • (1982) J. Theor. Biol. , vol.99 , pp. 629-644
    • Charton, M.1    Charton, B.I.2
  • 6
    • 0017187836 scopus 로고
    • The nature of the accessible and buried surfaces in proteins
    • Chothia C. The nature of the accessible and buried surfaces in proteins. J. Mol. Biol. 1976, 105:1-12.
    • (1976) J. Mol. Biol. , vol.105 , pp. 1-12
    • Chothia, C.1
  • 7
    • 0027122748 scopus 로고
    • Proteins. One thousand families for the molecular biologist
    • Chothia C. Proteins. One thousand families for the molecular biologist. Nature 1992, 357:543-544.
    • (1992) Nature , vol.357 , pp. 543-544
    • Chothia, C.1
  • 8
    • 3142779931 scopus 로고    scopus 로고
    • Prediction of protein subcellular locations by GO-FunD-PseAA predictor
    • Chou K.C., Cai Y.D. Prediction of protein subcellular locations by GO-FunD-PseAA predictor. Biochem. Biophys. Res. Commun. 2004, 320:1236-1239.
    • (2004) Biochem. Biophys. Res. Commun. , vol.320 , pp. 1236-1239
    • Chou, K.C.1    Cai, Y.D.2
  • 9
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20:273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 10
    • 34547840255 scopus 로고    scopus 로고
    • Kernel-based data fusion for gene prioritization
    • De Bie T., et al. Kernel-based data fusion for gene prioritization. Bioinformatics 2007, 23:i125-i132.
    • (2007) Bioinformatics , vol.23 , pp. i125-i132
    • De Bie, T.1
  • 11
    • 0022596727 scopus 로고
    • Solvation energy in protein folding and binding
    • Eisenberg D., McLachlan A.D. Solvation energy in protein folding and binding. Nature 1986, 319:199-203.
    • (1986) Nature , vol.319 , pp. 199-203
    • Eisenberg, D.1    McLachlan, A.D.2
  • 12
    • 0023731964 scopus 로고
    • Amino acid side chain parameters for correlation studies in biology and pharmacology
    • Fauchere J.L., et al. Amino acid side chain parameters for correlation studies in biology and pharmacology. Int. J. Pept. Protein Res. 1988, 32:269-278.
    • (1988) Int. J. Pept. Protein Res. , vol.32 , pp. 269-278
    • Fauchere, J.L.1
  • 13
    • 0033781978 scopus 로고    scopus 로고
    • Prediction of membrane protein types based on the hydrophobic index of amino acids
    • Feng Z.P., Zhang C.T. Prediction of membrane protein types based on the hydrophobic index of amino acids. J. Protein Chem. 2000, 19:269-275.
    • (2000) J. Protein Chem. , vol.19 , pp. 269-275
    • Feng, Z.P.1    Zhang, C.T.2
  • 14
    • 78651289449 scopus 로고    scopus 로고
    • Ensembl 2011
    • Flicek P., et al. Ensembl 2011. Nucleic Acids Res. 2011, 39:D800-D806.
    • (2011) Nucleic Acids Res. , vol.39 , pp. D800-D806
    • Flicek, P.1
  • 15
    • 0037580196 scopus 로고    scopus 로고
    • A similarity-based method for genome-wide prediction of disease-relevant human genes
    • Freudenberg J., Propping P. A similarity-based method for genome-wide prediction of disease-relevant human genes. Bioinformatics 2002, 18(Suppl 2):S110-S115.
    • (2002) Bioinformatics , vol.18 , pp. S110-S115
    • Freudenberg, J.1    Propping, P.2
  • 16
    • 84892449284 scopus 로고    scopus 로고
    • Plus ça change - evolutionary sequence divergence predicts protein subcellular localization signals
    • Fukasawa Y., et al. Plus ça change - evolutionary sequence divergence predicts protein subcellular localization signals. BMC Genomics 2014, 15:46.
    • (2014) BMC Genomics , vol.15 , pp. 46
    • Fukasawa, Y.1
  • 17
    • 0037146578 scopus 로고    scopus 로고
    • Finding genes that underlie complex traits
    • Glazier A.M., Nadeau J.H., Aitman T.J. Finding genes that underlie complex traits. Science 2002, 298:2345-2349.
    • (2002) Science , vol.298 , pp. 2345-2349
    • Glazier, A.M.1    Nadeau, J.H.2    Aitman, T.J.3
  • 18
    • 0016197604 scopus 로고
    • Amino acid difference formula to help explain protein evolution
    • Grantham R. Amino acid difference formula to help explain protein evolution. Science 1974, 185:862-864.
    • (1974) Science , vol.185 , pp. 862-864
    • Grantham, R.1
  • 19
    • 44349159560 scopus 로고    scopus 로고
    • Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences
    • Guo Y., et al. Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences. Nucleic Acids Res. 2008, 36:3025-3030.
    • (2008) Nucleic Acids Res. , vol.36 , pp. 3025-3030
    • Guo, Y.1
  • 20
    • 1242274331 scopus 로고    scopus 로고
    • Prediction of RNA-binding proteins from primary sequence by a support vector machine approach
    • Han L.Y., et al. Prediction of RNA-binding proteins from primary sequence by a support vector machine approach. RNA 2004, 10:355-368.
    • (2004) RNA , vol.10 , pp. 355-368
    • Han, L.Y.1
  • 21
    • 0000448982 scopus 로고
    • Prediction of protein antigenic determinants from amino acid sequences
    • Hopp T.P., Woods K.R. Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. USA 1981, 78:3824-3828.
    • (1981) Proc. Natl. Acad. Sci. USA , vol.78 , pp. 3824-3828
    • Hopp, T.P.1    Woods, K.R.2
  • 22
    • 0018784438 scopus 로고
    • Surface and inside volumes in globular proteins
    • Janin J. Surface and inside volumes in globular proteins. Nature 1979, 277:491-492.
    • (1979) Nature , vol.277 , pp. 491-492
    • Janin, J.1
  • 24
    • 41549139527 scopus 로고    scopus 로고
    • Walking the interactome for prioritization of candidate disease genes
    • Kohler S., et al. Walking the interactome for prioritization of candidate disease genes. Am. J. Hum. Genet. 2008, 82:949-958.
    • (2008) Am. J. Hum. Genet. , vol.82 , pp. 949-958
    • Kohler, S.1
  • 25
    • 75149162979 scopus 로고    scopus 로고
    • Integration of multiple data sources to prioritize candidate genes using discounted rating system
    • Li Y., Patra J.C. Integration of multiple data sources to prioritize candidate genes using discounted rating system. BMC Bioinform. 2010, 11:S20.
    • (2010) BMC Bioinform. , vol.11 , pp. S20
    • Li, Y.1    Patra, J.C.2
  • 26
    • 33747816816 scopus 로고    scopus 로고
    • PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence
    • Li Z.R., et al. PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res. 2006, 34:W32-W37.
    • (2006) Nucleic Acids Res. , vol.34 , pp. W32-W37
    • Li, Z.R.1
  • 27
    • 16344384583 scopus 로고    scopus 로고
    • Effect of training datasets on support vector machine prediction of protein-protein interactions
    • Lo S.L., et al. Effect of training datasets on support vector machine prediction of protein-protein interactions. Proteomics 2005, 5:876-884.
    • (2005) Proteomics , vol.5 , pp. 876-884
    • Lo, S.L.1
  • 28
    • 34147122065 scopus 로고    scopus 로고
    • Mendelian Inheritance in Man and its online version, OMIM
    • McKusick V.A. Mendelian Inheritance in Man and its online version, OMIM. Am. J. Hum. Genet. 2007, 80:588-604.
    • (2007) Am. J. Hum. Genet. , vol.80 , pp. 588-604
    • McKusick, V.A.1
  • 29
    • 80053478616 scopus 로고    scopus 로고
    • ProDiGe: prioritization of disease genes with multitask machine learning from positive and unlabeled examples
    • Mordelet F., Vert J.P. ProDiGe: prioritization of disease genes with multitask machine learning from positive and unlabeled examples. BMC Bioinform. 2011, 12:389.
    • (2011) BMC Bioinform. , vol.12 , pp. 389
    • Mordelet, F.1    Vert, J.P.2
  • 30
    • 77951952127 scopus 로고    scopus 로고
    • The power of protein interaction networks for associating genes with diseases
    • Navlakha S., Kingsford C. The power of protein interaction networks for associating genes with diseases. Bioinformatics 2010, 26:1057-1063.
    • (2010) Bioinformatics , vol.26 , pp. 1057-1063
    • Navlakha, S.1    Kingsford, C.2
  • 31
    • 0008583320 scopus 로고
    • Shape and surface features of globular proteins
    • Prabhakaran M., Ponnuswamy P.K. Shape and surface features of globular proteins. Macromolecules 1982, 15:314-320.
    • (1982) Macromolecules , vol.15 , pp. 314-320
    • Prabhakaran, M.1    Ponnuswamy, P.K.2
  • 32
    • 40949087923 scopus 로고    scopus 로고
    • Improved use of continuous attributes in C4.5,
    • arXiv preprint cs/9603103.
    • Quinlan, J.R.. 1996. Improved use of continuous attributes in C4.5, arXiv preprint cs/9603103.
    • (1996)
    • Quinlan, J.R.1
  • 33
    • 47349128648 scopus 로고    scopus 로고
    • An integrated approach to inferring gene-disease associations in humans
    • Radivojac P., et al. An integrated approach to inferring gene-disease associations in humans. Proteins 2008, 72:1030-1037.
    • (2008) Proteins , vol.72 , pp. 1030-1037
    • Radivojac, P.1
  • 34
    • 78049480691 scopus 로고    scopus 로고
    • GeneCards Version 3: the human gene integrator
    • baq020
    • Safran M., et al. GeneCards Version 3: the human gene integrator. Database: J. Biol. Databases Curation 2010, 2010. baq020.
    • (2010) Database: J. Biol. Databases Curation , vol.2010
    • Safran, M.1
  • 35
    • 0037297509 scopus 로고    scopus 로고
    • A novel approach to the recognition of protein architecture from sequence using Fourier analysis and neural networks
    • Shepherd A.J., Gorse D., Thornton J.M. A novel approach to the recognition of protein architecture from sequence using Fourier analysis and neural networks. Proteins: Struct. Funct. Bioinform. 2003, 50:290-302.
    • (2003) Proteins: Struct. Funct. Bioinform. , vol.50 , pp. 290-302
    • Shepherd, A.J.1    Gorse, D.2    Thornton, J.M.3
  • 36
    • 0344756842 scopus 로고    scopus 로고
    • Modern information retrieval: a brief overview
    • Singhal A. Modern information retrieval: a brief overview. IEEE Data Eng. Bull. 2001, 24:35-43.
    • (2001) IEEE Data Eng. Bull. , vol.24 , pp. 35-43
    • Singhal, A.1
  • 38
    • 29244463544 scopus 로고    scopus 로고
    • Population structure inferred by local spatial autocorrelation: an example from an Amerindian tribal population
    • Sokal R.R., Thomson B.A. Population structure inferred by local spatial autocorrelation: an example from an Amerindian tribal population. Am. J. Phys. Anthropol. 2006, 129:121-131.
    • (2006) Am. J. Phys. Anthropol. , vol.129 , pp. 121-131
    • Sokal, R.R.1    Thomson, B.A.2
  • 39
    • 0021112868 scopus 로고
    • Correlation of sequence hydrophobicities measures similarity in three-dimensional protein structure
    • Sweet R.M., Eisenberg D. Correlation of sequence hydrophobicities measures similarity in three-dimensional protein structure. J. Mol. Biol. 1983, 171:479-488.
    • (1983) J. Mol. Biol. , vol.171 , pp. 479-488
    • Sweet, R.M.1    Eisenberg, D.2
  • 40
    • 77950017573 scopus 로고    scopus 로고
    • Sequence-based prediction of protein-protein interactions by means of rotation forest and autocorrelation descriptor
    • Xia J.F., Han K., Huang D.S. Sequence-based prediction of protein-protein interactions by means of rotation forest and autocorrelation descriptor. Protein Pept. Lett. 2010, 17:137-145.
    • (2010) Protein Pept. Lett. , vol.17 , pp. 137-145
    • Xia, J.F.1    Han, K.2    Huang, D.S.3
  • 41
    • 33751017706 scopus 로고    scopus 로고
    • Discovering disease-genes by topological features in human protein-protein interaction network
    • Xu J., Li Y. Discovering disease-genes by topological features in human protein-protein interaction network. Bioinformatics 2006, 22:2800-2805.
    • (2006) Bioinformatics , vol.22 , pp. 2800-2805
    • Xu, J.1    Li, Y.2
  • 42
    • 79960732452 scopus 로고    scopus 로고
    • Inferring gene-phenotype associations via global protein complex network propagation
    • Yang P., et al. Inferring gene-phenotype associations via global protein complex network propagation. PLoS One 2011, 6:e21502.
    • (2011) PLoS One , vol.6 , pp. e21502
    • Yang, P.1
  • 43
    • 84870411465 scopus 로고    scopus 로고
    • Positive-unlabeled learning for disease gene identification
    • Yang P., et al. Positive-unlabeled learning for disease gene identification. Bioinformatics 2012, 28:2640-2647.
    • (2012) Bioinformatics , vol.28 , pp. 2640-2647
    • Yang, P.1
  • 44
    • 84884590545 scopus 로고    scopus 로고
    • A novel method based on new adaptive LVQ neural network for predicting protein-protein interactions from protein sequences
    • Yousef A., Moghadam Charkari N. A novel method based on new adaptive LVQ neural network for predicting protein-protein interactions from protein sequences. J. Theor. Biol. 2013, 336:231-239.
    • (2013) J. Theor. Biol. , vol.336 , pp. 231-239
    • Yousef, A.1    Moghadam Charkari, N.2
  • 45
    • 77950545785 scopus 로고    scopus 로고
    • Predicting protein-protein interactions in unbalanced data using the primary structure of proteins
    • Yu C.-Y., Chou L.-C., Chang D.T.H. Predicting protein-protein interactions in unbalanced data using the primary structure of proteins. BMC Bioinform. 2010, 11:167.
    • (2010) BMC Bioinform. , vol.11 , pp. 167
    • Yu, C.-Y.1    Chou, L.-C.2    Chang, D.T.H.3
  • 46
    • 79953744330 scopus 로고    scopus 로고
    • Integrating multiple protein-protein interaction networks to prioritize disease genes: a Bayesian regression approach
    • Zhang W., Sun F., Jiang R. Integrating multiple protein-protein interaction networks to prioritize disease genes: a Bayesian regression approach. BMC Bioinform. 2011, 12(Suppl 1):S11.
    • (2011) BMC Bioinform. , vol.12 , pp. S11
    • Zhang, W.1    Sun, F.2    Jiang, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.