-
1
-
-
84866888408
-
Thermal and hydraulic characteristics of nanofluid flow in a helically coiled tube heat exchanger
-
H.A. Mohammed, and K. Narrein Thermal and hydraulic characteristics of nanofluid flow in a helically coiled tube heat exchanger Int. Commun. Heat Mass Transfer 39 2012 1375 1383
-
(2012)
Int. Commun. Heat Mass Transfer
, vol.39
, pp. 1375-1383
-
-
Mohammed, H.A.1
Narrein, K.2
-
2
-
-
84882303327
-
Turbulent nanofluid flow over periodic rib-grooved channels
-
A. Vatani, and H. Mohammed Turbulent nanofluid flow over periodic rib-grooved channels Eng. Appl. Comput. Fluid Mech. 7 2013 369 381
-
(2013)
Eng. Appl. Comput. Fluid Mech.
, vol.7
, pp. 369-381
-
-
Vatani, A.1
Mohammed, H.2
-
4
-
-
0016544740
-
Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results
-
A.S. Ahuja Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results J. Appl. Phys. 46 1975 3408 3416
-
(1975)
J. Appl. Phys.
, vol.46
, pp. 3408-3416
-
-
Ahuja, A.S.1
-
5
-
-
0007644403
-
Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles
-
H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles Netsu Bussei 7 1993 227 233
-
(1993)
Netsu Bussei
, vol.7
, pp. 227-233
-
-
Masuda, H.1
Ebata, A.2
Teramae, K.3
Hishinuma, N.4
-
6
-
-
0029427666
-
Enhancing thermal conductivity of fluids with nanoparticles
-
S. Choi Enhancing thermal conductivity of fluids with nanoparticles ASME Publ. Fed 231 1995 99 106
-
(1995)
ASME Publ. Fed
, vol.231
, pp. 99-106
-
-
Choi, S.1
-
8
-
-
33748262070
-
Critical review of heat transfer characteristics of nanofluids
-
V. Trisaksri, and S. Wongwises Critical review of heat transfer characteristics of nanofluids Renew. Sust. Energ. Rev. 11 2007 512 523
-
(2007)
Renew. Sust. Energ. Rev.
, vol.11
, pp. 512-523
-
-
Trisaksri, V.1
Wongwises, S.2
-
9
-
-
64749113545
-
Review of convective heat transfer enhancement with nanofluids
-
S. Kakaç, and A. Pramuanjaroenkij Review of convective heat transfer enhancement with nanofluids Int. J. Heat Mass Transf. 52 2009 3187 3196
-
(2009)
Int. J. Heat Mass Transf.
, vol.52
, pp. 3187-3196
-
-
Kakaç, S.1
Pramuanjaroenkij, A.2
-
10
-
-
79958016364
-
A review of nanofluid stability properties and characterization in stationary conditions
-
A. Ghadimi, R. Saidur, and H. Metselaar A review of nanofluid stability properties and characterization in stationary conditions Int. J. Heat Mass Transf. 54 2011 4051 4068
-
(2011)
Int. J. Heat Mass Transf.
, vol.54
, pp. 4051-4068
-
-
Ghadimi, A.1
Saidur, R.2
Metselaar, H.3
-
11
-
-
78149408746
-
Techniques for measuring the thermal conductivity of nanofluids: a review
-
G. Paul, M. Chopkar, I. Manna, and P. Das Techniques for measuring the thermal conductivity of nanofluids: a review Renew. Sust. Energ. Rev. 14 2010 1913 1924
-
(2010)
Renew. Sust. Energ. Rev.
, vol.14
, pp. 1913-1924
-
-
Paul, G.1
Chopkar, M.2
Manna, I.3
Das, P.4
-
12
-
-
84888623049
-
Investigation of thermal conductivity and viscosity of nanofluids
-
T.A. Kumar, G. Pradyumna, and S. Jahar Investigation of thermal conductivity and viscosity of nanofluids J. Environ. Res. Dev. 7 2012
-
(2012)
J. Environ. Res. Dev.
, vol.7
-
-
Kumar, T.A.1
Pradyumna, G.2
Jahar, S.3
-
13
-
-
84862816081
-
A review of thermal conductivity data, mechanisms and models for nanofluids
-
J.-H. Lee, S.-H. Lee, C.J. Choi, S.P. Jang, and S.U. Choi A review of thermal conductivity data, mechanisms and models for nanofluids Int. J. Micro-Nano Scale Transport 1 2010 269 322
-
(2010)
Int. J. Micro-Nano Scale Transport
, vol.1
, pp. 269-322
-
-
Lee, J.-H.1
Lee, S.-H.2
Choi, C.J.3
Jang, S.P.4
Choi, S.U.5
-
14
-
-
82655175805
-
Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review
-
C. Kleinstreuer, and Y. Feng Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review Nanoscale Res. Lett. 6 2011 1 13
-
(2011)
Nanoscale Res. Lett.
, vol.6
, pp. 1-13
-
-
Kleinstreuer, C.1
Feng, Y.2
-
15
-
-
0032825295
-
Measuring thermal conductivity of fluids containing oxide nanoparticles
-
S. Lee, S.-S. Choi, S. Li, and J. Eastman Measuring thermal conductivity of fluids containing oxide nanoparticles J. Heat Transf. 121 1999 280 289
-
(1999)
J. Heat Transf.
, vol.121
, pp. 280-289
-
-
Lee, S.1
Choi, S.-S.2
Li, S.3
Eastman, J.4
-
16
-
-
33746983549
-
A model for the thermal conductivity of nanofluids - the effect of interfacial layer
-
K. Leong, C. Yang, and S. Murshed A model for the thermal conductivity of nanofluids - the effect of interfacial layer J. Nanoparticle Res. 8 2006 245 254
-
(2006)
J. Nanoparticle Res.
, vol.8
, pp. 245-254
-
-
Leong, K.1
Yang, C.2
Murshed, S.3
-
17
-
-
64749090247
-
Thermal conductivity enhancement of nanoparticles in distilled water
-
L. Syam Sundar, and K. Sharma Thermal conductivity enhancement of nanoparticles in distilled water Int. J. Nanopart. 1 2008 66 77
-
(2008)
Int. J. Nanopart.
, vol.1
, pp. 66-77
-
-
Syam Sundar, L.1
Sharma, K.2
-
18
-
-
34748834292
-
Mixing effect on the enhancement of the effective thermal conductivity of nanoparticle suspensions (nanofluids)
-
C. Li, and G. Peterson Mixing effect on the enhancement of the effective thermal conductivity of nanoparticle suspensions (nanofluids) Int. J. Heat Mass Transf. 50 2007 4668 4677
-
(2007)
Int. J. Heat Mass Transf.
, vol.50
, pp. 4668-4677
-
-
Li, C.1
Peterson, G.2
-
20
-
-
0001435905
-
Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles
-
J. Eastman, S. Choi, S. Li, W. Yu, and L. Thompson Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles Appl. Phys. Lett. 78 2001 718 720
-
(2001)
Appl. Phys. Lett.
, vol.78
, pp. 718-720
-
-
Eastman, J.1
Choi, S.2
Li, S.3
Yu, W.4
Thompson, L.5
-
21
-
-
14744281545
-
Enhanced thermal conductivity of TiO2-water based nanofluids
-
S. Murshed, K. Leong, and C. Yang Enhanced thermal conductivity of TiO2-water based nanofluids Int. J. Therm. Sci. 44 2005 367 373
-
(2005)
Int. J. Therm. Sci.
, vol.44
, pp. 367-373
-
-
Murshed, S.1
Leong, K.2
Yang, C.3
-
22
-
-
37749004290
-
Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory
-
E.V. Timofeeva, A.N. Gavrilov, J.M. McCloskey, Y.V. Tolmachev, S. Sprunt, L.M. Lopatina, and J.V. Selinger Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory Phys. Rev. E 76 2007 061203
-
(2007)
Phys. Rev. E
, vol.76
, pp. 061203
-
-
Timofeeva, E.V.1
Gavrilov, A.N.2
McCloskey, J.M.3
Tolmachev, Y.V.4
Sprunt, S.5
Lopatina, L.M.6
Selinger, J.V.7
-
23
-
-
39449114611
-
Investigations of thermal conductivity and viscosity of nanofluids
-
S. Murshed, K. Leong, and C. Yang Investigations of thermal conductivity and viscosity of nanofluids Int. J. Therm. Sci. 47 2008 560 568
-
(2008)
Int. J. Therm. Sci.
, vol.47
, pp. 560-568
-
-
Murshed, S.1
Leong, K.2
Yang, C.3
-
24
-
-
0042418742
-
Temperature dependence of thermal conductivity enhancement for nanofluids
-
S.K. Das, N. Putra, P. Thiesen, and W. Roetzel Temperature dependence of thermal conductivity enhancement for nanofluids J. Heat Transf. 125 2003 567 574
-
(2003)
J. Heat Transf.
, vol.125
, pp. 567-574
-
-
Das, S.K.1
Putra, N.2
Thiesen, P.3
Roetzel, W.4
-
25
-
-
56649120696
-
New temperature dependent thermal conductivity data for water-based nanofluids
-
H.A. Mintsa, G. Roy, C.T. Nguyen, and D. Doucet New temperature dependent thermal conductivity data for water-based nanofluids Int. J. Therm. Sci. 48 2009 363 371
-
(2009)
Int. J. Therm. Sci.
, vol.48
, pp. 363-371
-
-
Mintsa, H.A.1
Roy, G.2
Nguyen, C.T.3
Doucet, D.4
-
26
-
-
84867025975
-
Effects of nanolayer structure and Brownian motion of particles in thermal conductivity enhancement of nanofluids
-
M. Izadi, S. Hossainpour, and V. Jalali Effects of nanolayer structure and Brownian motion of particles in thermal conductivity enhancement of nanofluids Int. J. Mech. Ind. Aerosp. Eng. 3 2009 201
-
(2009)
Int. J. Mech. Ind. Aerosp. Eng.
, vol.3
, pp. 201
-
-
Izadi, M.1
Hossainpour, S.2
Jalali, V.3
-
27
-
-
68749110719
-
Experimental determination of thermal conductivity of three nanofluids and development of new correlations
-
R.S. Vajjha, and D.K. Das Experimental determination of thermal conductivity of three nanofluids and development of new correlations Int. J. Heat Mass Transf. 52 2009 4675 4682
-
(2009)
Int. J. Heat Mass Transf.
, vol.52
, pp. 4675-4682
-
-
Vajjha, R.S.1
Das, D.K.2
-
28
-
-
84865023901
-
Measurement of the thermal conductivity of titania and alumina nanofluids
-
T. Yiamsawasd, A.S. Dalkilic, and S. Wongwises Measurement of the thermal conductivity of titania and alumina nanofluids Thermochim. Acta 545 2012 48 56
-
(2012)
Thermochim. Acta
, vol.545
, pp. 48-56
-
-
Yiamsawasd, T.1
Dalkilic, A.S.2
Wongwises, S.3
-
30
-
-
84890564871
-
Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids
-
J. Jeong, C. Li, Y. Kwon, J. Lee, S.H. Kim, and R. Yun Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids Int. J. Refrig. 36 2013 2233 2241
-
(2013)
Int. J. Refrig.
, vol.36
, pp. 2233-2241
-
-
Jeong, J.1
Li, C.2
Kwon, Y.3
Lee, J.4
Kim, S.H.5
Yun, R.6
-
31
-
-
79961179051
-
Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids
-
M. Corcione Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids Energy Convers. Manag. 52 2011 789 793
-
(2011)
Energy Convers. Manag.
, vol.52
, pp. 789-793
-
-
Corcione, M.1
-
32
-
-
84901687189
-
Superior thermal features of carbon nanotubes-based nanofluids - a review
-
S. Murshed, and C. Nieto de Castro Superior thermal features of carbon nanotubes-based nanofluids - a review Renew. Sust. Energ. Rev. 37 2014 155 167
-
(2014)
Renew. Sust. Energ. Rev.
, vol.37
, pp. 155-167
-
-
Murshed, S.1
Nieto De Castro, C.2
-
34
-
-
84896512232
-
Nanofluid flow and heat transfer in an asymmetric porous channel with expanding or contracting wall
-
M. Hatami, M. Sheikholeslami, and D. Ganji Nanofluid flow and heat transfer in an asymmetric porous channel with expanding or contracting wall J. Mol. Liq. 195 2014 230 239
-
(2014)
J. Mol. Liq.
, vol.195
, pp. 230-239
-
-
Hatami, M.1
Sheikholeslami, M.2
Ganji, D.3
-
35
-
-
84888091021
-
Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field
-
M. Sheikholeslami, M. Hatami, and D. Ganji Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field J. Mol. Liq. 190 2014 112 120
-
(2014)
J. Mol. Liq.
, vol.190
, pp. 112-120
-
-
Sheikholeslami, M.1
Hatami, M.2
Ganji, D.3
-
36
-
-
84893854660
-
Thermal management for free convection of nanofluid using two phase model
-
M. Sheikholeslami, M. Gorji-Bandpy, D. Ganji, and S. Soleimani Thermal management for free convection of nanofluid using two phase model J. Mol. Liq. 194 2014 179 187
-
(2014)
J. Mol. Liq.
, vol.194
, pp. 179-187
-
-
Sheikholeslami, M.1
Gorji-Bandpy, M.2
Ganji, D.3
Soleimani, S.4
-
37
-
-
84896530435
-
Heat generation/absorption on MHD stagnation flow of nanofluid towards a porous stretching sheet with prescribed surface heat flux
-
B. Jalilpour, S. Jafarmadar, D. Ganji, A. Shotorban, and H. Taghavifar Heat generation/absorption on MHD stagnation flow of nanofluid towards a porous stretching sheet with prescribed surface heat flux J. Mol. Liq. 195 2014 194 204
-
(2014)
J. Mol. Liq.
, vol.195
, pp. 194-204
-
-
Jalilpour, B.1
Jafarmadar, S.2
Ganji, D.3
Shotorban, A.4
Taghavifar, H.5
-
38
-
-
84892658729
-
Heat flux boundary condition for nanofluid filled enclosure in presence of magnetic field
-
M. Sheikholeslami, M. Gorji-Bandpy, D. Ganji, and S. Soleimani Heat flux boundary condition for nanofluid filled enclosure in presence of magnetic field J. Mol. Liq. 193 2014 174 184
-
(2014)
J. Mol. Liq.
, vol.193
, pp. 174-184
-
-
Sheikholeslami, M.1
Gorji-Bandpy, M.2
Ganji, D.3
Soleimani, S.4
-
39
-
-
73749088493
-
Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid
-
M. Chandrasekar, S. Suresh, and A. Chandra Bose Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid Exp. Thermal Fluid Sci. 34 2010 210 216
-
(2010)
Exp. Thermal Fluid Sci.
, vol.34
, pp. 210-216
-
-
Chandrasekar, M.1
Suresh, S.2
Chandra Bose, A.3
-
40
-
-
77955087026
-
An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids
-
H.E. Patel, T. Sundararajan, and S.K. Das An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids J. Nanoparticle Res. 12 2010 1015 1031
-
(2010)
J. Nanoparticle Res.
, vol.12
, pp. 1015-1031
-
-
Patel, H.E.1
Sundararajan, T.2
Das, S.K.3
-
42
-
-
51849140510
-
Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method
-
D.-W. Oh, A. Jain, J.K. Eaton, K.E. Goodson, and J.S. Lee Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method Int. J. Heat Fluid Flow 29 2008 1456 1461
-
(2008)
Int. J. Heat Fluid Flow
, vol.29
, pp. 1456-1461
-
-
Oh, D.-W.1
Jain, A.2
Eaton, J.K.3
Goodson, K.E.4
Lee, J.S.5
-
43
-
-
79951671980
-
Enhancement of thermal conductivity of ethylene glycol based silver nanofluids
-
P. Sharma, I.-H. Baek, T. Cho, S. Park, and K.B. Lee Enhancement of thermal conductivity of ethylene glycol based silver nanofluids Powder Technol. 208 2011 7 19
-
(2011)
Powder Technol.
, vol.208
, pp. 7-19
-
-
Sharma, P.1
Baek, I.-H.2
Cho, T.3
Park, S.4
Lee, K.B.5
-
45
-
-
20444450512
-
Study of the enhanced thermal conductivity of Fe nanofluids
-
T.-K. Hong, H.-S. Yang, and C. Choi Study of the enhanced thermal conductivity of Fe nanofluids J. Appl. Phys. 97 2005 064311
-
(2005)
J. Appl. Phys.
, vol.97
, pp. 064311
-
-
Hong, T.-K.1
Yang, H.-S.2
Choi, C.3
-
46
-
-
0142167499
-
Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects
-
H.E. Patel, S.K. Das, T. Sundararajan, A.S. Nair, B. George, and T. Pradeep Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects Appl. Phys. Lett. 83 2003 2931 2933
-
(2003)
Appl. Phys. Lett.
, vol.83
, pp. 2931-2933
-
-
Patel, H.E.1
Das, S.K.2
Sundararajan, T.3
Nair, A.S.4
George, B.5
Pradeep, T.6
-
47
-
-
77954340861
-
Effect of CuO nanoparticle concentration on R134a/lubricant pool-boiling heat transfer
-
M.A. Kedzierski Effect of CuO nanoparticle concentration on R134a/lubricant pool-boiling heat transfer J. Heat Transf. 131 2009 043205
-
(2009)
J. Heat Transf.
, vol.131
, pp. 043205
-
-
Kedzierski, M.A.1
-
48
-
-
74149083109
-
Nucleate pool boiling heat transfer characteristics of refrigerant/oil mixture with diamond nanoparticles
-
H. Peng, G. Ding, H. Hu, W. Jiang, D. Zhuang, and K. Wang Nucleate pool boiling heat transfer characteristics of refrigerant/oil mixture with diamond nanoparticles Int. J. Refrig. 33 2010 347 358
-
(2010)
Int. J. Refrig.
, vol.33
, pp. 347-358
-
-
Peng, H.1
Ding, G.2
Hu, H.3
Jiang, W.4
Zhuang, D.5
Wang, K.6
-
49
-
-
0032043092
-
Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles
-
B.C. Pak, and Y.I. Cho Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles Exp. Heat Transfer Int. J. 11 1998 151 170
-
(1998)
Exp. Heat Transfer Int. J.
, vol.11
, pp. 151-170
-
-
Pak, B.C.1
Cho, Y.I.2
-
50
-
-
42549095595
-
Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes
-
W. Williams, J. Buongiorno, and L.-W. Hu Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes J. Heat Transf. 130 2008 042412
-
(2008)
J. Heat Transf.
, vol.130
, pp. 042412
-
-
Williams, W.1
Buongiorno, J.2
Hu, L.-W.3
-
51
-
-
2442499447
-
Heat transfer enhancement of copper nanofluid with acoustic cavitation
-
D. Zhou Heat transfer enhancement of copper nanofluid with acoustic cavitation Int. J. Heat Mass Transf. 47 2004 3109 3117
-
(2004)
Int. J. Heat Mass Transf.
, vol.47
, pp. 3109-3117
-
-
Zhou, D.1
-
52
-
-
13644261470
-
Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow
-
Y. Yang, Z.G. Zhang, E.A. Grulke, W.B. Anderson, and G. Wu Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow Int. J. Heat Mass Transf. 48 2005 1107 1116
-
(2005)
Int. J. Heat Mass Transf.
, vol.48
, pp. 1107-1116
-
-
Yang, Y.1
Zhang, Z.G.2
Grulke, E.A.3
Anderson, W.B.4
Wu, G.5
-
53
-
-
84939542127
-
-
Athens, Greece
-
M.N. Pantzali, N.A. Kazakis, N. Tsolakidis, J. Tihon, and A.A. Mouza 2007 Measuring transport properties of nanofluids 6th National Chemical Engineering Conference, Athens, Greece 2007
-
(2007)
Measuring transport properties of nanofluids 6th National Chemical Engineering Conference
-
-
Pantzali, M.N.1
Kazakis, N.A.2
Tsolakidis, N.3
Tihon, J.4
Mouza, A.A.5
-
54
-
-
84888309936
-
Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid
-
L. Syam Sundar, M.K. Singh, and A. Sousa Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid Int. Commun. Heat Mass Transfer 49 2013 17 24
-
(2013)
Int. Commun. Heat Mass Transfer
, vol.49
, pp. 17-24
-
-
Syam Sundar, L.1
Singh, M.K.2
Sousa, A.3
-
57
-
-
84908146885
-
New thermophysical properties of water based TiO2 nanofluid - the hysteresis phenomenon revisited
-
Z. Said, R. Saidur, A. Hepbasli, and N.A. Rahim New thermophysical properties of water based TiO2 nanofluid - the hysteresis phenomenon revisited Int. Commun. Heat Mass Transfer 58 2014 85 95
-
(2014)
Int. Commun. Heat Mass Transfer
, vol.58
, pp. 85-95
-
-
Said, Z.1
Saidur, R.2
Hepbasli, A.3
Rahim, N.A.4
-
58
-
-
50849135469
-
Measurement of the thermal conductivity of nanofluids by the multicurrent hot-wire method
-
J.R.V. Peñas, J.M.O. de Zárate, and M. Khayet Measurement of the thermal conductivity of nanofluids by the multicurrent hot-wire method J. Appl. Phys. 104 2008 044314
-
(2008)
J. Appl. Phys.
, vol.104
, pp. 044314
-
-
Peñas, J.R.V.1
De Zárate, J.M.O.2
Khayet, M.3
-
60
-
-
84861579239
-
Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids
-
R.S. Khedkar, S.S. Sonawane, and K.L. Wasewar Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids Int. Commun. Heat Mass Transfer 39 2012 665 669
-
(2012)
Int. Commun. Heat Mass Transfer
, vol.39
, pp. 665-669
-
-
Khedkar, R.S.1
Sonawane, S.S.2
Wasewar, K.L.3
-
61
-
-
84939481159
-
Investigation of alumina nano fluid thermal conductivity
-
A.W. Ezzat, and I.M. Hasan Investigation of alumina nano fluid thermal conductivity Int. J. Comput. Appl. 102 2014 15 23
-
(2014)
Int. J. Comput. Appl.
, vol.102
, pp. 15-23
-
-
Ezzat, A.W.1
Hasan, I.M.2
-
62
-
-
84862533951
-
Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles
-
L. Fedele, L. Colla, and S. Bobbo Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles Int. J. Refrig. 35 2012 1359 1366
-
(2012)
Int. J. Refrig.
, vol.35
, pp. 1359-1366
-
-
Fedele, L.1
Colla, L.2
Bobbo, S.3
-
63
-
-
84881406649
-
Design of a steady-state, parallel-plate thermal conductivity apparatus for nanofluids and comparative measurements with transient HWTC apparatus
-
American Society of Mechanical Engineers
-
M.M. Kostic, and C.J. Walleck Design of a steady-state, parallel-plate thermal conductivity apparatus for nanofluids and comparative measurements with transient HWTC apparatus ASME 2010 International Mechanical Engineering Congress and Exposition 2010 American Society of Mechanical Engineers 1457 1464
-
(2010)
ASME 2010 International Mechanical Engineering Congress and Exposition
, pp. 1457-1464
-
-
Kostic, M.M.1
Walleck, C.J.2
-
64
-
-
23044478491
-
Reynolds-number dependence of turbulence structures in a drag-reducing surfactant solution channel flow investigated by particle image velocimetry
-
F.-C. Li, Y. Kawaguchi, T. Segawa, and K. Hishida Reynolds-number dependence of turbulence structures in a drag-reducing surfactant solution channel flow investigated by particle image velocimetry Phys. Fluids (1994-present) 17 2005 075104
-
(2005)
Phys. Fluids (1994-present)
, vol.17
, pp. 075104
-
-
Li, F.-C.1
Kawaguchi, Y.2
Segawa, T.3
Hishida, K.4
-
65
-
-
84858715790
-
Experimental investigation on the thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids
-
J.-C. Yang, F.-C. Li, W.-W. Zhou, Y.-R. He, and B.-C. Jiang Experimental investigation on the thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids Int. J. Heat Mass Transf. 55 2012 3160 3166
-
(2012)
Int. J. Heat Mass Transf.
, vol.55
, pp. 3160-3166
-
-
Yang, J.-C.1
Li, F.-C.2
Zhou, W.-W.3
He, Y.-R.4
Jiang, B.-C.5
-
66
-
-
84874398182
-
Experimental study on the characteristics of thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids containing multiwalled carbon nanotubes
-
F.-C. Li, J.-C. Yang, W.-W. Zhou, Y.-R. He, Y.-M. Huang, and B.-C. Jiang Experimental study on the characteristics of thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids containing multiwalled carbon nanotubes Thermochim. Acta 556 2013 47 53
-
(2013)
Thermochim. Acta
, vol.556
, pp. 47-53
-
-
Li, F.-C.1
Yang, J.-C.2
Zhou, W.-W.3
He, Y.-R.4
Huang, Y.-M.5
Jiang, B.-C.6
-
67
-
-
46149091319
-
Influence of CATB on stability of copper nano-suspensions
-
X. Li, D. Zhu, X. Wang, J. Gao, and H. Li Influence of CATB on stability of copper nano-suspensions Biophotonics, Nanophotonics and Metamaterials 2006. International Symposium on, IEEE 2006 350 353
-
(2006)
Biophotonics, Nanophotonics and Metamaterials 2006. International Symposium on, IEEE
, pp. 350-353
-
-
Li, X.1
Zhu, D.2
Wang, X.3
Gao, J.4
Li, H.5
-
68
-
-
33749382093
-
Effect of clusters on thermal conductivity in nanofluids
-
X. Jie, Y. Bo-Ming, and Y. Mei-Juan Effect of clusters on thermal conductivity in nanofluids Chin. Phys. Lett. 23 2006 2819
-
(2006)
Chin. Phys. Lett.
, vol.23
, pp. 2819
-
-
Jie, X.1
Bo-Ming, Y.2
Mei-Juan, Y.3
-
69
-
-
31144453694
-
Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles
-
K. Hong, T.-K. Hong, and H.-S. Yang Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles Appl. Phys. Lett. 88 2006 031901
-
(2006)
Appl. Phys. Lett.
, vol.88
, pp. 031901
-
-
Hong, K.1
Hong, T.-K.2
Yang, H.-S.3
-
70
-
-
33749502780
-
Effect of aggregation on thermal conduction in colloidal nanofluids
-
R. Prasher, W. Evans, P. Meakin, J. Fish, P. Phelan, and P. Keblinski Effect of aggregation on thermal conduction in colloidal nanofluids Appl. Phys. Lett. 89 2006 143119
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 143119
-
-
Prasher, R.1
Evans, W.2
Meakin, P.3
Fish, J.4
Phelan, P.5
Keblinski, P.6
-
71
-
-
33746933431
-
Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid)
-
R. Prasher, P.E. Phelan, and P. Bhattacharya Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid) Nano Lett. 6 2006 1529 1534
-
(2006)
Nano Lett.
, vol.6
, pp. 1529-1534
-
-
Prasher, R.1
Phelan, P.E.2
Bhattacharya, P.3
-
72
-
-
84861809591
-
Simultaneous effects of Brownian motion and clustering of nanoparticles on thermal conductivity of nanofluids
-
S. Nabi, and E. Shirani Simultaneous effects of Brownian motion and clustering of nanoparticles on thermal conductivity of nanofluids IJST 36 2012 53 68
-
(2012)
IJST
, vol.36
, pp. 53-68
-
-
Nabi, S.1
Shirani, E.2
-
73
-
-
75349099440
-
Effect of nanoparticle clustering on the effective thermal conductivity of concentrated silica colloids
-
C. Wu, T.J. Cho, J. Xu, D. Lee, B. Yang, and M.R. Zachariah Effect of nanoparticle clustering on the effective thermal conductivity of concentrated silica colloids Phys. Rev. E 81 2010 011406
-
(2010)
Phys. Rev. E
, vol.81
, pp. 011406
-
-
Wu, C.1
Cho, T.J.2
Xu, J.3
Lee, D.4
Yang, B.5
Zachariah, M.R.6
-
75
-
-
84954824794
-
Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen
-
V.D. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen Ann. Phys. 416 1935 636 664
-
(1935)
Ann. Phys.
, vol.416
, pp. 636-664
-
-
Bruggeman, V.D.1
-
76
-
-
0242582398
-
Thermal conductivity of heterogeneous two-component systems
-
R. Hamilton, and O. Crosser Thermal conductivity of heterogeneous two-component systems Ind. Eng. Chem. Fundam. 1 1962 187 191
-
(1962)
Ind. Eng. Chem. Fundam.
, vol.1
, pp. 187-191
-
-
Hamilton, R.1
Crosser, O.2
-
77
-
-
33749063542
-
Effective thermal conductivity of dispersed materials
-
A.P.E. Yamada, and A.P.T. Ota Effective thermal conductivity of dispersed materials Wärme-und Stoffübertragung 13 1980 27 37
-
(1980)
Wärme-und Stoffübertragung
, vol.13
, pp. 27-37
-
-
Yamada, A.P.E.1
Ota, A.P.T.2
-
78
-
-
84946448011
-
On the interface between a fluid and a planar wall: theory and simulations of a hard sphere fluid at a hard wall
-
J. Henderson, and F. van Swol On the interface between a fluid and a planar wall: theory and simulations of a hard sphere fluid at a hard wall Mol. Phys. 51 1984 991 1010
-
(1984)
Mol. Phys.
, vol.51
, pp. 991-1010
-
-
Henderson, J.1
Van Swol, F.2
-
79
-
-
0038082987
-
The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model
-
W. Yu, and S. Choi The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model J. Nanoparticle Res. 5 2003 167 171
-
(2003)
J. Nanoparticle Res.
, vol.5
, pp. 167-171
-
-
Yu, W.1
Choi, S.2
-
80
-
-
13144250223
-
A model of thermal conductivity of nanofluids with interfacial shells
-
Q. Xue, and W.-M. Xu A model of thermal conductivity of nanofluids with interfacial shells Mater. Chem. Phys. 90 2005 298 301
-
(2005)
Mater. Chem. Phys.
, vol.90
, pp. 298-301
-
-
Xue, Q.1
Xu, W.-M.2
-
81
-
-
84888420156
-
A semi-analytical model for the thermal conductivity of nanofluids and determination of the nanolayer thickness
-
C. Tso, S. Fu, and C.Y. Chao A semi-analytical model for the thermal conductivity of nanofluids and determination of the nanolayer thickness Int. J. Heat Mass Transf. 70 2014 202 214
-
(2014)
Int. J. Heat Mass Transf.
, vol.70
, pp. 202-214
-
-
Tso, C.1
Fu, S.2
Chao, C.Y.3
-
83
-
-
18544377641
-
Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture
-
H. Xie, M. Fujii, and X. Zhang Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture Int. J. Heat Mass Transf. 48 2005 2926 2932
-
(2005)
Int. J. Heat Mass Transf.
, vol.48
, pp. 2926-2932
-
-
Xie, H.1
Fujii, M.2
Zhang, X.3
-
84
-
-
84859833656
-
Investigations on the nanolayer heat transfer in nanoparticles-in-liquid suspensions
-
E.C. Nsofor, and T. Gadge Investigations on the nanolayer heat transfer in nanoparticles-in-liquid suspensions ARPN J. Eng. Appl. Sci. 6 2011 21 28
-
(2011)
ARPN J. Eng. Appl. Sci.
, vol.6
, pp. 21-28
-
-
Nsofor, E.C.1
Gadge, T.2
-
85
-
-
0038717659
-
Effective conductivity of composites with spherical inclusions: effect of coating and detachment
-
S.Y. Lu, and J.L. Song Effective conductivity of composites with spherical inclusions: effect of coating and detachment J. Appl. Phys. 79 1996 609 618
-
(1996)
J. Appl. Phys.
, vol.79
, pp. 609-618
-
-
Lu, S.Y.1
Song, J.L.2
-
86
-
-
84983433953
-
The interfacial layer effect on thermal conductivity of nano-colloidal dispersions
-
R. Pasrija, and S. Srivastava The interfacial layer effect on thermal conductivity of nano-colloidal dispersions Int. J. Appl. Phys. Math. 4 1 January 2014
-
(2014)
Int. J. Appl. Phys. Math.
, vol.4
, Issue.1
-
-
Pasrija, R.1
Srivastava, S.2
-
87
-
-
84908219172
-
Effective thermal conductivity of nanofluids considering interfacial nano-shells
-
H. Jiang, H. Li, Q. Xu, and L. Shi Effective thermal conductivity of nanofluids considering interfacial nano-shells Mater. Chem. Phys. 148 2014 195 200
-
(2014)
Mater. Chem. Phys.
, vol.148
, pp. 195-200
-
-
Jiang, H.1
Li, H.2
Xu, Q.3
Shi, L.4
-
88
-
-
84924879397
-
A novel method to determine the thermal conductivity of interfacial layers surrounding the nanoparticles of a nanofluid
-
R. Pal A novel method to determine the thermal conductivity of interfacial layers surrounding the nanoparticles of a nanofluid Nanomaterials 4 2014 844 855
-
(2014)
Nanomaterials
, vol.4
, pp. 844-855
-
-
Pal, R.1
-
89
-
-
34447630661
-
Effects of various parameters on nanofluid thermal conductivity
-
S.P. Jang, and S.U. Choi Effects of various parameters on nanofluid thermal conductivity J. Heat Transf. 129 2007 617 623
-
(2007)
J. Heat Transf.
, vol.129
, pp. 617-623
-
-
Jang, S.P.1
Choi, S.U.2
-
90
-
-
16244411133
-
A new thermal conductivity model for nanofluids
-
J. Koo, and C. Kleinstreuer A new thermal conductivity model for nanofluids J. Nanoparticle Res. 6 2004 577 588
-
(2004)
J. Nanoparticle Res.
, vol.6
, pp. 577-588
-
-
Koo, J.1
Kleinstreuer, C.2
-
93
-
-
33745815300
-
Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids
-
R. Prasher, P. Bhattacharya, and P.E. Phelan Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids J. Heat Transf. 128 2006 588 595
-
(2006)
J. Heat Transf.
, vol.128
, pp. 588-595
-
-
Prasher, R.1
Bhattacharya, P.2
Phelan, P.E.3
-
94
-
-
64749113318
-
A combined model for the effective thermal conductivity of nanofluids
-
S. Murshed, K. Leong, and C. Yang A combined model for the effective thermal conductivity of nanofluids Appl. Therm. Eng. 29 2009 2477 2483
-
(2009)
Appl. Therm. Eng.
, vol.29
, pp. 2477-2483
-
-
Murshed, S.1
Leong, K.2
Yang, C.3
-
95
-
-
77955563747
-
A simple analytical model for calculating the effective thermal conductivity of nanofluids
-
N. Sohrabi, N. Masoumi, A. Behzadmehr, and S. Sarvari A simple analytical model for calculating the effective thermal conductivity of nanofluids Heat Transfer Asian Res. 39 2010 141 150
-
(2010)
Heat Transfer Asian Res.
, vol.39
, pp. 141-150
-
-
Sohrabi, N.1
Masoumi, N.2
Behzadmehr, A.3
Sarvari, S.4
-
96
-
-
80052056299
-
Modeling of thermal conductivity of nanofluids by modifying Maxwell's equation using cell model approach
-
S. Mehta, K.P. Chauhan, and S. Kanagaraj Modeling of thermal conductivity of nanofluids by modifying Maxwell's equation using cell model approach J. Nanoparticle Res. 13 2011 2791 2798
-
(2011)
J. Nanoparticle Res.
, vol.13
, pp. 2791-2798
-
-
Mehta, S.1
Chauhan, K.P.2
Kanagaraj, S.3
-
97
-
-
84875029293
-
Developing a novel form of thermal conductivity of nanofluids with Brownian motion effect by means of fractal geometry
-
B. Xiao, Y. Yang, and L. Chen Developing a novel form of thermal conductivity of nanofluids with Brownian motion effect by means of fractal geometry Powder Technol. 239 2013 409 414
-
(2013)
Powder Technol.
, vol.239
, pp. 409-414
-
-
Xiao, B.1
Yang, Y.2
Chen, L.3
-
98
-
-
84901603729
-
New Nusselt number correlations to predict the thermal conductivity of nanofluids
-
H. Zerradi, S. Ouaskit, A. Dezairi, H. Loulijat, and S. Mizani New Nusselt number correlations to predict the thermal conductivity of nanofluids Adv. Powder Technol. 25 2014 1124 1131
-
(2014)
Adv. Powder Technol.
, vol.25
, pp. 1124-1131
-
-
Zerradi, H.1
Ouaskit, S.2
Dezairi, A.3
Loulijat, H.4
Mizani, S.5
-
100
-
-
33748333479
-
Stochastic thermal transport of nanoparticle suspensions
-
Y. Xuan, Q. Li, X. Zhang, and M. Fujii Stochastic thermal transport of nanoparticle suspensions J. Appl. Phys. 100 2006 043507
-
(2006)
J. Appl. Phys.
, vol.100
, pp. 043507
-
-
Xuan, Y.1
Li, Q.2
Zhang, X.3
Fujii, M.4
-
101
-
-
77955324065
-
A model for thermal conductivity of nanofluids
-
M. Emami-Meibodi, M. Vafaie-Sefti, A.M. Rashidi, A. Amrollahi, M. Tabasi, and H. Sid-Kalal A model for thermal conductivity of nanofluids Mater. Chem. Phys. 123 2010 639 643
-
(2010)
Mater. Chem. Phys.
, vol.123
, pp. 639-643
-
-
Emami-Meibodi, M.1
Vafaie-Sefti, M.2
Rashidi, A.M.3
Amrollahi, A.4
Tabasi, M.5
Sid-Kalal, H.6
-
102
-
-
80755176303
-
Contribution of Brownian motion in thermal conductivity of nanofluids
-
S.S. Murshed, and C.N. de Castro Contribution of Brownian motion in thermal conductivity of nanofluids Proc World Congress on Engineering 2011 1905 1909
-
(2011)
Proc World Congress on Engineering
, pp. 1905-1909
-
-
Murshed, S.S.1
De Castro, C.N.2
-
104
-
-
0029395122
-
Role of micro-convection due to non-affine motion of particles in a mono-disperse suspension
-
S.K. Gupte, S.G. Advani, and P. Huq Role of micro-convection due to non-affine motion of particles in a mono-disperse suspension Int. J. Heat Mass Transf. 38 1995 2945 2958
-
(1995)
Int. J. Heat Mass Transf.
, vol.38
, pp. 2945-2958
-
-
Gupte, S.K.1
Advani, S.G.2
Huq, P.3
-
105
-
-
84922524139
-
A comprehensive model for the enhanced thermal conductivity of nanofluids
-
W. Wei A comprehensive model for the enhanced thermal conductivity of nanofluids J. Adv. Res. Phys. 3 2013
-
(2013)
J. Adv. Res. Phys.
, vol.3
-
-
Wei, W.1
-
106
-
-
43049105038
-
Thermal conductivity of nanofluids: effects of graded nanolayers and mutual interaction
-
X. Zhou, and L. Gao Thermal conductivity of nanofluids: effects of graded nanolayers and mutual interaction J. Appl. Phys. 103 2008 083503
-
(2008)
J. Appl. Phys.
, vol.103
, pp. 083503
-
-
Zhou, X.1
Gao, L.2
-
107
-
-
84903277831
-
Extended Maxwell model for the thermal conductivity of nanofluids that accounts for nonlocal heat transfer
-
M. Shaker, E. Birgersson, and A. Mujumdar Extended Maxwell model for the thermal conductivity of nanofluids that accounts for nonlocal heat transfer Int. J. Therm. Sci. 84 2014 260 266
-
(2014)
Int. J. Therm. Sci.
, vol.84
, pp. 260-266
-
-
Shaker, M.1
Birgersson, E.2
Mujumdar, A.3
-
108
-
-
0037394035
-
Aggregation structure and thermal conductivity of nanofluids
-
Y. Xuan, Q. Li, and W. Hu Aggregation structure and thermal conductivity of nanofluids AICHE J. 49 2003 1038 1043
-
(2003)
AICHE J.
, vol.49
, pp. 1038-1043
-
-
Xuan, Y.1
Li, Q.2
Hu, W.3
-
109
-
-
0029124624
-
A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media
-
C. Hsu, P. Cheng, and K. Wong A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media J. Heat Transf. 117 1995 264 269
-
(1995)
J. Heat Transf.
, vol.117
, pp. 264-269
-
-
Hsu, C.1
Cheng, P.2
Wong, K.3
-
110
-
-
34250214988
-
The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles
-
Y. Feng, B. Yu, P. Xu, and M. Zou The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles J. Phys. D. Appl. Phys. 40 2007 3164
-
(2007)
J. Phys. D. Appl. Phys.
, vol.40
, pp. 3164
-
-
Feng, Y.1
Yu, B.2
Xu, P.3
Zou, M.4
-
111
-
-
39149138986
-
Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids
-
W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, and P. Keblinski Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids Int. J. Heat Mass Transf. 51 2008 1431 1438
-
(2008)
Int. J. Heat Mass Transf.
, vol.51
, pp. 1431-1438
-
-
Evans, W.1
Prasher, R.2
Fish, J.3
Meakin, P.4
Phelan, P.5
Keblinski, P.6
-
112
-
-
0031143265
-
Effective thermal conductivity of particulate composites with interfacial thermal resistance
-
C.-W. Nan, R. Birringer, D.R. Clarke, and H. Gleiter Effective thermal conductivity of particulate composites with interfacial thermal resistance J. Appl. Phys. 81 1997 6692 6699
-
(1997)
J. Appl. Phys.
, vol.81
, pp. 6692-6699
-
-
Nan, C.-W.1
Birringer, R.2
Clarke, D.R.3
Gleiter, H.4
-
113
-
-
0037570726
-
A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles
-
B.-X. Wang, L.-P. Zhou, and X.-F. Peng A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles Int. J. Heat Mass Transf. 46 2003 2665 2672
-
(2003)
Int. J. Heat Mass Transf.
, vol.46
, pp. 2665-2672
-
-
Wang, B.-X.1
Zhou, L.-P.2
Peng, X.-F.3
-
114
-
-
34547732411
-
Rheological behaviour of ethylene glycol based titania nanofluids
-
H. Chen, Y. Ding, Y. He, and C. Tan Rheological behaviour of ethylene glycol based titania nanofluids Chem. Phys. Lett. 444 2007 333 337
-
(2007)
Chem. Phys. Lett.
, vol.444
, pp. 333-337
-
-
Chen, H.1
Ding, Y.2
He, Y.3
Tan, C.4
-
115
-
-
71949122689
-
Experimental investigation of heat conduction mechanisms in nanofluids. Clue on clustering
-
J. Gao, R. Zheng, H. Ohtani, D. Zhu, and G. Chen Experimental investigation of heat conduction mechanisms in nanofluids. Clue on clustering Nano Lett. 9 2009 4128 4132
-
(2009)
Nano Lett.
, vol.9
, pp. 4128-4132
-
-
Gao, J.1
Zheng, R.2
Ohtani, H.3
Zhu, D.4
Chen, G.5
-
116
-
-
84874848569
-
Effect of aggregation on thermal conductivity and viscosity of nanofluids
-
S. Srivastava Effect of aggregation on thermal conductivity and viscosity of nanofluids Appl. Nanosci. 2 2012 325 331
-
(2012)
Appl. Nanosci.
, vol.2
, pp. 325-331
-
-
Srivastava, S.1
-
117
-
-
0000758954
-
Interfacial transport in porous media: application to dc electrical conductivity of mortars
-
L.M. Schwartz, E.J. Garboczi, and D.P. Bentz Interfacial transport in porous media: application to dc electrical conductivity of mortars J. Appl. Phys. 78 1995 5898 5908
-
(1995)
J. Appl. Phys.
, vol.78
, pp. 5898-5908
-
-
Schwartz, L.M.1
Garboczi, E.J.2
Bentz, D.P.3
-
118
-
-
84867761092
-
An investigation into modelling thermal conductivity for alumina-water nanofluids
-
S. Mallick, A. Mishra, and L. Kundan An investigation into modelling thermal conductivity for alumina-water nanofluids Powder Technol. 233 2013 234 244
-
(2013)
Powder Technol.
, vol.233
, pp. 234-244
-
-
Mallick, S.1
Mishra, A.2
Kundan, L.3
-
119
-
-
84877101065
-
Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications
-
L. Syam Sundar, M.K. Singh, and A.C.M. Sousa Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications Int. Commun. Heat Mass Transfer 44 2013 7 14
-
(2013)
Int. Commun. Heat Mass Transfer
, vol.44
, pp. 7-14
-
-
Syam Sundar, L.1
Singh, M.K.2
Sousa, A.C.M.3
-
120
-
-
77955470128
-
The effect of alumina/water nanofluid particle size on thermal conductivity
-
T.-P. Teng, Y.-H. Hung, T.-C. Teng, H.-E. Mo, and H.-G. Hsu The effect of alumina/water nanofluid particle size on thermal conductivity Appl. Therm. Eng. 30 2010 2213 2218
-
(2010)
Appl. Therm. Eng.
, vol.30
, pp. 2213-2218
-
-
Teng, T.-P.1
Hung, Y.-H.2
Teng, T.-C.3
Mo, H.-E.4
Hsu, H.-G.5
-
121
-
-
84939480482
-
An improved model for prediction of the effective thermal conductivity of nanofluids
-
K. Abbaspoursani, M. Allahyari, and M. Rahmani An improved model for prediction of the effective thermal conductivity of nanofluids J. Eng. Technol. 58 2011 234 237
-
(2011)
J. Eng. Technol.
, vol.58
, pp. 234-237
-
-
Abbaspoursani, K.1
Allahyari, M.2
Rahmani, M.3
-
122
-
-
78650621663
-
Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network
-
M. Hojjat, S.G. Etemad, R. Bagheri, and J. Thibault Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network Int. J. Heat Mass Transf. 54 2011 1017 1023
-
(2011)
Int. J. Heat Mass Transf.
, vol.54
, pp. 1017-1023
-
-
Hojjat, M.1
Etemad, S.G.2
Bagheri, R.3
Thibault, J.4
-
123
-
-
78349304474
-
Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks
-
M.M. Papari, F. Yousefi, J. Moghadasi, H. Karimi, and A. Campo Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks Int. J. Therm. Sci. 50 2011 44 52
-
(2011)
Int. J. Therm. Sci.
, vol.50
, pp. 44-52
-
-
Papari, M.M.1
Yousefi, F.2
Moghadasi, J.3
Karimi, H.4
Campo, A.5
|