메뉴 건너뛰기




Volumn 211, Issue , 2015, Pages 712-733

A survey of practical equations for prediction of effective thermal conductivity of spherical-particle nanofluids

Author keywords

Nanofluid; Prediction models; Thermal conductivity

Indexed keywords

BROWNIAN MOVEMENT; CONTINUUM MECHANICS; FORECASTING; NANOFLUIDICS; NANOTECHNOLOGY; REGRESSION ANALYSIS; THERMAL CONDUCTIVITY;

EID: 84939494670     PISSN: 01677322     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.molliq.2015.07.043     Document Type: Review
Times cited : (58)

References (123)
  • 1
    • 84866888408 scopus 로고    scopus 로고
    • Thermal and hydraulic characteristics of nanofluid flow in a helically coiled tube heat exchanger
    • H.A. Mohammed, and K. Narrein Thermal and hydraulic characteristics of nanofluid flow in a helically coiled tube heat exchanger Int. Commun. Heat Mass Transfer 39 2012 1375 1383
    • (2012) Int. Commun. Heat Mass Transfer , vol.39 , pp. 1375-1383
    • Mohammed, H.A.1    Narrein, K.2
  • 2
    • 84882303327 scopus 로고    scopus 로고
    • Turbulent nanofluid flow over periodic rib-grooved channels
    • A. Vatani, and H. Mohammed Turbulent nanofluid flow over periodic rib-grooved channels Eng. Appl. Comput. Fluid Mech. 7 2013 369 381
    • (2013) Eng. Appl. Comput. Fluid Mech. , vol.7 , pp. 369-381
    • Vatani, A.1    Mohammed, H.2
  • 4
    • 0016544740 scopus 로고
    • Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results
    • A.S. Ahuja Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results J. Appl. Phys. 46 1975 3408 3416
    • (1975) J. Appl. Phys. , vol.46 , pp. 3408-3416
    • Ahuja, A.S.1
  • 5
    • 0007644403 scopus 로고
    • Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles
    • H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles Netsu Bussei 7 1993 227 233
    • (1993) Netsu Bussei , vol.7 , pp. 227-233
    • Masuda, H.1    Ebata, A.2    Teramae, K.3    Hishinuma, N.4
  • 6
    • 0029427666 scopus 로고
    • Enhancing thermal conductivity of fluids with nanoparticles
    • S. Choi Enhancing thermal conductivity of fluids with nanoparticles ASME Publ. Fed 231 1995 99 106
    • (1995) ASME Publ. Fed , vol.231 , pp. 99-106
    • Choi, S.1
  • 8
    • 33748262070 scopus 로고    scopus 로고
    • Critical review of heat transfer characteristics of nanofluids
    • V. Trisaksri, and S. Wongwises Critical review of heat transfer characteristics of nanofluids Renew. Sust. Energ. Rev. 11 2007 512 523
    • (2007) Renew. Sust. Energ. Rev. , vol.11 , pp. 512-523
    • Trisaksri, V.1    Wongwises, S.2
  • 9
    • 64749113545 scopus 로고    scopus 로고
    • Review of convective heat transfer enhancement with nanofluids
    • S. Kakaç, and A. Pramuanjaroenkij Review of convective heat transfer enhancement with nanofluids Int. J. Heat Mass Transf. 52 2009 3187 3196
    • (2009) Int. J. Heat Mass Transf. , vol.52 , pp. 3187-3196
    • Kakaç, S.1    Pramuanjaroenkij, A.2
  • 10
    • 79958016364 scopus 로고    scopus 로고
    • A review of nanofluid stability properties and characterization in stationary conditions
    • A. Ghadimi, R. Saidur, and H. Metselaar A review of nanofluid stability properties and characterization in stationary conditions Int. J. Heat Mass Transf. 54 2011 4051 4068
    • (2011) Int. J. Heat Mass Transf. , vol.54 , pp. 4051-4068
    • Ghadimi, A.1    Saidur, R.2    Metselaar, H.3
  • 11
    • 78149408746 scopus 로고    scopus 로고
    • Techniques for measuring the thermal conductivity of nanofluids: a review
    • G. Paul, M. Chopkar, I. Manna, and P. Das Techniques for measuring the thermal conductivity of nanofluids: a review Renew. Sust. Energ. Rev. 14 2010 1913 1924
    • (2010) Renew. Sust. Energ. Rev. , vol.14 , pp. 1913-1924
    • Paul, G.1    Chopkar, M.2    Manna, I.3    Das, P.4
  • 12
    • 84888623049 scopus 로고    scopus 로고
    • Investigation of thermal conductivity and viscosity of nanofluids
    • T.A. Kumar, G. Pradyumna, and S. Jahar Investigation of thermal conductivity and viscosity of nanofluids J. Environ. Res. Dev. 7 2012
    • (2012) J. Environ. Res. Dev. , vol.7
    • Kumar, T.A.1    Pradyumna, G.2    Jahar, S.3
  • 14
    • 82655175805 scopus 로고    scopus 로고
    • Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review
    • C. Kleinstreuer, and Y. Feng Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review Nanoscale Res. Lett. 6 2011 1 13
    • (2011) Nanoscale Res. Lett. , vol.6 , pp. 1-13
    • Kleinstreuer, C.1    Feng, Y.2
  • 15
    • 0032825295 scopus 로고    scopus 로고
    • Measuring thermal conductivity of fluids containing oxide nanoparticles
    • S. Lee, S.-S. Choi, S. Li, and J. Eastman Measuring thermal conductivity of fluids containing oxide nanoparticles J. Heat Transf. 121 1999 280 289
    • (1999) J. Heat Transf. , vol.121 , pp. 280-289
    • Lee, S.1    Choi, S.-S.2    Li, S.3    Eastman, J.4
  • 16
    • 33746983549 scopus 로고    scopus 로고
    • A model for the thermal conductivity of nanofluids - the effect of interfacial layer
    • K. Leong, C. Yang, and S. Murshed A model for the thermal conductivity of nanofluids - the effect of interfacial layer J. Nanoparticle Res. 8 2006 245 254
    • (2006) J. Nanoparticle Res. , vol.8 , pp. 245-254
    • Leong, K.1    Yang, C.2    Murshed, S.3
  • 17
    • 64749090247 scopus 로고    scopus 로고
    • Thermal conductivity enhancement of nanoparticles in distilled water
    • L. Syam Sundar, and K. Sharma Thermal conductivity enhancement of nanoparticles in distilled water Int. J. Nanopart. 1 2008 66 77
    • (2008) Int. J. Nanopart. , vol.1 , pp. 66-77
    • Syam Sundar, L.1    Sharma, K.2
  • 18
    • 34748834292 scopus 로고    scopus 로고
    • Mixing effect on the enhancement of the effective thermal conductivity of nanoparticle suspensions (nanofluids)
    • C. Li, and G. Peterson Mixing effect on the enhancement of the effective thermal conductivity of nanoparticle suspensions (nanofluids) Int. J. Heat Mass Transf. 50 2007 4668 4677
    • (2007) Int. J. Heat Mass Transf. , vol.50 , pp. 4668-4677
    • Li, C.1    Peterson, G.2
  • 19
    • 0033339009 scopus 로고    scopus 로고
    • Thermal conductivity of nanoparticle-fluid mixture
    • X. Wang, X. Xu, and S.U.S. Choi Thermal conductivity of nanoparticle-fluid mixture J. Thermophys. Heat Transf. 13 1999 474 480
    • (1999) J. Thermophys. Heat Transf. , vol.13 , pp. 474-480
    • Wang, X.1    Xu, X.2    Choi, S.U.S.3
  • 20
    • 0001435905 scopus 로고    scopus 로고
    • Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles
    • J. Eastman, S. Choi, S. Li, W. Yu, and L. Thompson Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles Appl. Phys. Lett. 78 2001 718 720
    • (2001) Appl. Phys. Lett. , vol.78 , pp. 718-720
    • Eastman, J.1    Choi, S.2    Li, S.3    Yu, W.4    Thompson, L.5
  • 21
    • 14744281545 scopus 로고    scopus 로고
    • Enhanced thermal conductivity of TiO2-water based nanofluids
    • S. Murshed, K. Leong, and C. Yang Enhanced thermal conductivity of TiO2-water based nanofluids Int. J. Therm. Sci. 44 2005 367 373
    • (2005) Int. J. Therm. Sci. , vol.44 , pp. 367-373
    • Murshed, S.1    Leong, K.2    Yang, C.3
  • 23
    • 39449114611 scopus 로고    scopus 로고
    • Investigations of thermal conductivity and viscosity of nanofluids
    • S. Murshed, K. Leong, and C. Yang Investigations of thermal conductivity and viscosity of nanofluids Int. J. Therm. Sci. 47 2008 560 568
    • (2008) Int. J. Therm. Sci. , vol.47 , pp. 560-568
    • Murshed, S.1    Leong, K.2    Yang, C.3
  • 24
    • 0042418742 scopus 로고    scopus 로고
    • Temperature dependence of thermal conductivity enhancement for nanofluids
    • S.K. Das, N. Putra, P. Thiesen, and W. Roetzel Temperature dependence of thermal conductivity enhancement for nanofluids J. Heat Transf. 125 2003 567 574
    • (2003) J. Heat Transf. , vol.125 , pp. 567-574
    • Das, S.K.1    Putra, N.2    Thiesen, P.3    Roetzel, W.4
  • 25
    • 56649120696 scopus 로고    scopus 로고
    • New temperature dependent thermal conductivity data for water-based nanofluids
    • H.A. Mintsa, G. Roy, C.T. Nguyen, and D. Doucet New temperature dependent thermal conductivity data for water-based nanofluids Int. J. Therm. Sci. 48 2009 363 371
    • (2009) Int. J. Therm. Sci. , vol.48 , pp. 363-371
    • Mintsa, H.A.1    Roy, G.2    Nguyen, C.T.3    Doucet, D.4
  • 26
    • 84867025975 scopus 로고    scopus 로고
    • Effects of nanolayer structure and Brownian motion of particles in thermal conductivity enhancement of nanofluids
    • M. Izadi, S. Hossainpour, and V. Jalali Effects of nanolayer structure and Brownian motion of particles in thermal conductivity enhancement of nanofluids Int. J. Mech. Ind. Aerosp. Eng. 3 2009 201
    • (2009) Int. J. Mech. Ind. Aerosp. Eng. , vol.3 , pp. 201
    • Izadi, M.1    Hossainpour, S.2    Jalali, V.3
  • 27
    • 68749110719 scopus 로고    scopus 로고
    • Experimental determination of thermal conductivity of three nanofluids and development of new correlations
    • R.S. Vajjha, and D.K. Das Experimental determination of thermal conductivity of three nanofluids and development of new correlations Int. J. Heat Mass Transf. 52 2009 4675 4682
    • (2009) Int. J. Heat Mass Transf. , vol.52 , pp. 4675-4682
    • Vajjha, R.S.1    Das, D.K.2
  • 28
    • 84865023901 scopus 로고    scopus 로고
    • Measurement of the thermal conductivity of titania and alumina nanofluids
    • T. Yiamsawasd, A.S. Dalkilic, and S. Wongwises Measurement of the thermal conductivity of titania and alumina nanofluids Thermochim. Acta 545 2012 48 56
    • (2012) Thermochim. Acta , vol.545 , pp. 48-56
    • Yiamsawasd, T.1    Dalkilic, A.S.2    Wongwises, S.3
  • 30
    • 84890564871 scopus 로고    scopus 로고
    • Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids
    • J. Jeong, C. Li, Y. Kwon, J. Lee, S.H. Kim, and R. Yun Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids Int. J. Refrig. 36 2013 2233 2241
    • (2013) Int. J. Refrig. , vol.36 , pp. 2233-2241
    • Jeong, J.1    Li, C.2    Kwon, Y.3    Lee, J.4    Kim, S.H.5    Yun, R.6
  • 31
    • 79961179051 scopus 로고    scopus 로고
    • Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids
    • M. Corcione Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids Energy Convers. Manag. 52 2011 789 793
    • (2011) Energy Convers. Manag. , vol.52 , pp. 789-793
    • Corcione, M.1
  • 32
    • 84901687189 scopus 로고    scopus 로고
    • Superior thermal features of carbon nanotubes-based nanofluids - a review
    • S. Murshed, and C. Nieto de Castro Superior thermal features of carbon nanotubes-based nanofluids - a review Renew. Sust. Energ. Rev. 37 2014 155 167
    • (2014) Renew. Sust. Energ. Rev. , vol.37 , pp. 155-167
    • Murshed, S.1    Nieto De Castro, C.2
  • 33
    • 84883635594 scopus 로고    scopus 로고
    • 3-water nanofluid flow over a horizontal plate
    • 3-water nanofluid flow over a horizontal plate J. Mol. Liq. 187 2013 294 301
    • (2013) J. Mol. Liq. , vol.187 , pp. 294-301
    • Hatami, M.1    Nouri, R.2    Ganji, D.3
  • 34
    • 84896512232 scopus 로고    scopus 로고
    • Nanofluid flow and heat transfer in an asymmetric porous channel with expanding or contracting wall
    • M. Hatami, M. Sheikholeslami, and D. Ganji Nanofluid flow and heat transfer in an asymmetric porous channel with expanding or contracting wall J. Mol. Liq. 195 2014 230 239
    • (2014) J. Mol. Liq. , vol.195 , pp. 230-239
    • Hatami, M.1    Sheikholeslami, M.2    Ganji, D.3
  • 35
    • 84888091021 scopus 로고    scopus 로고
    • Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field
    • M. Sheikholeslami, M. Hatami, and D. Ganji Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field J. Mol. Liq. 190 2014 112 120
    • (2014) J. Mol. Liq. , vol.190 , pp. 112-120
    • Sheikholeslami, M.1    Hatami, M.2    Ganji, D.3
  • 36
    • 84893854660 scopus 로고    scopus 로고
    • Thermal management for free convection of nanofluid using two phase model
    • M. Sheikholeslami, M. Gorji-Bandpy, D. Ganji, and S. Soleimani Thermal management for free convection of nanofluid using two phase model J. Mol. Liq. 194 2014 179 187
    • (2014) J. Mol. Liq. , vol.194 , pp. 179-187
    • Sheikholeslami, M.1    Gorji-Bandpy, M.2    Ganji, D.3    Soleimani, S.4
  • 37
    • 84896530435 scopus 로고    scopus 로고
    • Heat generation/absorption on MHD stagnation flow of nanofluid towards a porous stretching sheet with prescribed surface heat flux
    • B. Jalilpour, S. Jafarmadar, D. Ganji, A. Shotorban, and H. Taghavifar Heat generation/absorption on MHD stagnation flow of nanofluid towards a porous stretching sheet with prescribed surface heat flux J. Mol. Liq. 195 2014 194 204
    • (2014) J. Mol. Liq. , vol.195 , pp. 194-204
    • Jalilpour, B.1    Jafarmadar, S.2    Ganji, D.3    Shotorban, A.4    Taghavifar, H.5
  • 38
    • 84892658729 scopus 로고    scopus 로고
    • Heat flux boundary condition for nanofluid filled enclosure in presence of magnetic field
    • M. Sheikholeslami, M. Gorji-Bandpy, D. Ganji, and S. Soleimani Heat flux boundary condition for nanofluid filled enclosure in presence of magnetic field J. Mol. Liq. 193 2014 174 184
    • (2014) J. Mol. Liq. , vol.193 , pp. 174-184
    • Sheikholeslami, M.1    Gorji-Bandpy, M.2    Ganji, D.3    Soleimani, S.4
  • 39
    • 73749088493 scopus 로고    scopus 로고
    • Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid
    • M. Chandrasekar, S. Suresh, and A. Chandra Bose Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid Exp. Thermal Fluid Sci. 34 2010 210 216
    • (2010) Exp. Thermal Fluid Sci. , vol.34 , pp. 210-216
    • Chandrasekar, M.1    Suresh, S.2    Chandra Bose, A.3
  • 40
    • 77955087026 scopus 로고    scopus 로고
    • An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids
    • H.E. Patel, T. Sundararajan, and S.K. Das An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids J. Nanoparticle Res. 12 2010 1015 1031
    • (2010) J. Nanoparticle Res. , vol.12 , pp. 1015-1031
    • Patel, H.E.1    Sundararajan, T.2    Das, S.K.3
  • 41
    • 57749173150 scopus 로고    scopus 로고
    • Thermal conductivity of AlN-ethanol nanofluids
    • P. Hu, W.-L. Shan, F. Yu, and Z.-S. Chen Thermal conductivity of AlN-ethanol nanofluids Int. J. Thermophys. 29 2008 1968 1973
    • (2008) Int. J. Thermophys. , vol.29 , pp. 1968-1973
    • Hu, P.1    Shan, W.-L.2    Yu, F.3    Chen, Z.-S.4
  • 42
    • 51849140510 scopus 로고    scopus 로고
    • Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method
    • D.-W. Oh, A. Jain, J.K. Eaton, K.E. Goodson, and J.S. Lee Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method Int. J. Heat Fluid Flow 29 2008 1456 1461
    • (2008) Int. J. Heat Fluid Flow , vol.29 , pp. 1456-1461
    • Oh, D.-W.1    Jain, A.2    Eaton, J.K.3    Goodson, K.E.4    Lee, J.S.5
  • 43
    • 79951671980 scopus 로고    scopus 로고
    • Enhancement of thermal conductivity of ethylene glycol based silver nanofluids
    • P. Sharma, I.-H. Baek, T. Cho, S. Park, and K.B. Lee Enhancement of thermal conductivity of ethylene glycol based silver nanofluids Powder Technol. 208 2011 7 19
    • (2011) Powder Technol. , vol.208 , pp. 7-19
    • Sharma, P.1    Baek, I.-H.2    Cho, T.3    Park, S.4    Lee, K.B.5
  • 45
    • 20444450512 scopus 로고    scopus 로고
    • Study of the enhanced thermal conductivity of Fe nanofluids
    • T.-K. Hong, H.-S. Yang, and C. Choi Study of the enhanced thermal conductivity of Fe nanofluids J. Appl. Phys. 97 2005 064311
    • (2005) J. Appl. Phys. , vol.97 , pp. 064311
    • Hong, T.-K.1    Yang, H.-S.2    Choi, C.3
  • 46
    • 0142167499 scopus 로고    scopus 로고
    • Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects
    • H.E. Patel, S.K. Das, T. Sundararajan, A.S. Nair, B. George, and T. Pradeep Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects Appl. Phys. Lett. 83 2003 2931 2933
    • (2003) Appl. Phys. Lett. , vol.83 , pp. 2931-2933
    • Patel, H.E.1    Das, S.K.2    Sundararajan, T.3    Nair, A.S.4    George, B.5    Pradeep, T.6
  • 47
    • 77954340861 scopus 로고    scopus 로고
    • Effect of CuO nanoparticle concentration on R134a/lubricant pool-boiling heat transfer
    • M.A. Kedzierski Effect of CuO nanoparticle concentration on R134a/lubricant pool-boiling heat transfer J. Heat Transf. 131 2009 043205
    • (2009) J. Heat Transf. , vol.131 , pp. 043205
    • Kedzierski, M.A.1
  • 48
    • 74149083109 scopus 로고    scopus 로고
    • Nucleate pool boiling heat transfer characteristics of refrigerant/oil mixture with diamond nanoparticles
    • H. Peng, G. Ding, H. Hu, W. Jiang, D. Zhuang, and K. Wang Nucleate pool boiling heat transfer characteristics of refrigerant/oil mixture with diamond nanoparticles Int. J. Refrig. 33 2010 347 358
    • (2010) Int. J. Refrig. , vol.33 , pp. 347-358
    • Peng, H.1    Ding, G.2    Hu, H.3    Jiang, W.4    Zhuang, D.5    Wang, K.6
  • 49
    • 0032043092 scopus 로고    scopus 로고
    • Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles
    • B.C. Pak, and Y.I. Cho Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles Exp. Heat Transfer Int. J. 11 1998 151 170
    • (1998) Exp. Heat Transfer Int. J. , vol.11 , pp. 151-170
    • Pak, B.C.1    Cho, Y.I.2
  • 50
    • 42549095595 scopus 로고    scopus 로고
    • Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes
    • W. Williams, J. Buongiorno, and L.-W. Hu Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes J. Heat Transf. 130 2008 042412
    • (2008) J. Heat Transf. , vol.130 , pp. 042412
    • Williams, W.1    Buongiorno, J.2    Hu, L.-W.3
  • 51
    • 2442499447 scopus 로고    scopus 로고
    • Heat transfer enhancement of copper nanofluid with acoustic cavitation
    • D. Zhou Heat transfer enhancement of copper nanofluid with acoustic cavitation Int. J. Heat Mass Transf. 47 2004 3109 3117
    • (2004) Int. J. Heat Mass Transf. , vol.47 , pp. 3109-3117
    • Zhou, D.1
  • 52
    • 13644261470 scopus 로고    scopus 로고
    • Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow
    • Y. Yang, Z.G. Zhang, E.A. Grulke, W.B. Anderson, and G. Wu Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow Int. J. Heat Mass Transf. 48 2005 1107 1116
    • (2005) Int. J. Heat Mass Transf. , vol.48 , pp. 1107-1116
    • Yang, Y.1    Zhang, Z.G.2    Grulke, E.A.3    Anderson, W.B.4    Wu, G.5
  • 54
    • 84888309936 scopus 로고    scopus 로고
    • Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid
    • L. Syam Sundar, M.K. Singh, and A. Sousa Thermal conductivity of ethylene glycol and water mixture based Fe3O4 nanofluid Int. Commun. Heat Mass Transfer 49 2013 17 24
    • (2013) Int. Commun. Heat Mass Transfer , vol.49 , pp. 17-24
    • Syam Sundar, L.1    Singh, M.K.2    Sousa, A.3
  • 56
    • 33645854344 scopus 로고    scopus 로고
    • Experimental investigation of oxide nanofluids laminar flow convective heat transfer
    • S. Zeinali Heris, S.G. Etemad, and M. Nasr Esfahany Experimental investigation of oxide nanofluids laminar flow convective heat transfer Int. Commun. Heat Mass Transfer 33 2006 529 535
    • (2006) Int. Commun. Heat Mass Transfer , vol.33 , pp. 529-535
    • Zeinali Heris, S.1    Etemad, S.G.2    Nasr Esfahany, M.3
  • 57
    • 84908146885 scopus 로고    scopus 로고
    • New thermophysical properties of water based TiO2 nanofluid - the hysteresis phenomenon revisited
    • Z. Said, R. Saidur, A. Hepbasli, and N.A. Rahim New thermophysical properties of water based TiO2 nanofluid - the hysteresis phenomenon revisited Int. Commun. Heat Mass Transfer 58 2014 85 95
    • (2014) Int. Commun. Heat Mass Transfer , vol.58 , pp. 85-95
    • Said, Z.1    Saidur, R.2    Hepbasli, A.3    Rahim, N.A.4
  • 58
    • 50849135469 scopus 로고    scopus 로고
    • Measurement of the thermal conductivity of nanofluids by the multicurrent hot-wire method
    • J.R.V. Peñas, J.M.O. de Zárate, and M. Khayet Measurement of the thermal conductivity of nanofluids by the multicurrent hot-wire method J. Appl. Phys. 104 2008 044314
    • (2008) J. Appl. Phys. , vol.104 , pp. 044314
    • Peñas, J.R.V.1    De Zárate, J.M.O.2    Khayet, M.3
  • 60
    • 84861579239 scopus 로고    scopus 로고
    • Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids
    • R.S. Khedkar, S.S. Sonawane, and K.L. Wasewar Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids Int. Commun. Heat Mass Transfer 39 2012 665 669
    • (2012) Int. Commun. Heat Mass Transfer , vol.39 , pp. 665-669
    • Khedkar, R.S.1    Sonawane, S.S.2    Wasewar, K.L.3
  • 61
    • 84939481159 scopus 로고    scopus 로고
    • Investigation of alumina nano fluid thermal conductivity
    • A.W. Ezzat, and I.M. Hasan Investigation of alumina nano fluid thermal conductivity Int. J. Comput. Appl. 102 2014 15 23
    • (2014) Int. J. Comput. Appl. , vol.102 , pp. 15-23
    • Ezzat, A.W.1    Hasan, I.M.2
  • 62
    • 84862533951 scopus 로고    scopus 로고
    • Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles
    • L. Fedele, L. Colla, and S. Bobbo Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles Int. J. Refrig. 35 2012 1359 1366
    • (2012) Int. J. Refrig. , vol.35 , pp. 1359-1366
    • Fedele, L.1    Colla, L.2    Bobbo, S.3
  • 63
    • 84881406649 scopus 로고    scopus 로고
    • Design of a steady-state, parallel-plate thermal conductivity apparatus for nanofluids and comparative measurements with transient HWTC apparatus
    • American Society of Mechanical Engineers
    • M.M. Kostic, and C.J. Walleck Design of a steady-state, parallel-plate thermal conductivity apparatus for nanofluids and comparative measurements with transient HWTC apparatus ASME 2010 International Mechanical Engineering Congress and Exposition 2010 American Society of Mechanical Engineers 1457 1464
    • (2010) ASME 2010 International Mechanical Engineering Congress and Exposition , pp. 1457-1464
    • Kostic, M.M.1    Walleck, C.J.2
  • 64
    • 23044478491 scopus 로고    scopus 로고
    • Reynolds-number dependence of turbulence structures in a drag-reducing surfactant solution channel flow investigated by particle image velocimetry
    • F.-C. Li, Y. Kawaguchi, T. Segawa, and K. Hishida Reynolds-number dependence of turbulence structures in a drag-reducing surfactant solution channel flow investigated by particle image velocimetry Phys. Fluids (1994-present) 17 2005 075104
    • (2005) Phys. Fluids (1994-present) , vol.17 , pp. 075104
    • Li, F.-C.1    Kawaguchi, Y.2    Segawa, T.3    Hishida, K.4
  • 65
    • 84858715790 scopus 로고    scopus 로고
    • Experimental investigation on the thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids
    • J.-C. Yang, F.-C. Li, W.-W. Zhou, Y.-R. He, and B.-C. Jiang Experimental investigation on the thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids Int. J. Heat Mass Transf. 55 2012 3160 3166
    • (2012) Int. J. Heat Mass Transf. , vol.55 , pp. 3160-3166
    • Yang, J.-C.1    Li, F.-C.2    Zhou, W.-W.3    He, Y.-R.4    Jiang, B.-C.5
  • 66
    • 84874398182 scopus 로고    scopus 로고
    • Experimental study on the characteristics of thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids containing multiwalled carbon nanotubes
    • F.-C. Li, J.-C. Yang, W.-W. Zhou, Y.-R. He, Y.-M. Huang, and B.-C. Jiang Experimental study on the characteristics of thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids containing multiwalled carbon nanotubes Thermochim. Acta 556 2013 47 53
    • (2013) Thermochim. Acta , vol.556 , pp. 47-53
    • Li, F.-C.1    Yang, J.-C.2    Zhou, W.-W.3    He, Y.-R.4    Huang, Y.-M.5    Jiang, B.-C.6
  • 68
    • 33749382093 scopus 로고    scopus 로고
    • Effect of clusters on thermal conductivity in nanofluids
    • X. Jie, Y. Bo-Ming, and Y. Mei-Juan Effect of clusters on thermal conductivity in nanofluids Chin. Phys. Lett. 23 2006 2819
    • (2006) Chin. Phys. Lett. , vol.23 , pp. 2819
    • Jie, X.1    Bo-Ming, Y.2    Mei-Juan, Y.3
  • 69
    • 31144453694 scopus 로고    scopus 로고
    • Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles
    • K. Hong, T.-K. Hong, and H.-S. Yang Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles Appl. Phys. Lett. 88 2006 031901
    • (2006) Appl. Phys. Lett. , vol.88 , pp. 031901
    • Hong, K.1    Hong, T.-K.2    Yang, H.-S.3
  • 71
    • 33746933431 scopus 로고    scopus 로고
    • Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid)
    • R. Prasher, P.E. Phelan, and P. Bhattacharya Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid) Nano Lett. 6 2006 1529 1534
    • (2006) Nano Lett. , vol.6 , pp. 1529-1534
    • Prasher, R.1    Phelan, P.E.2    Bhattacharya, P.3
  • 72
    • 84861809591 scopus 로고    scopus 로고
    • Simultaneous effects of Brownian motion and clustering of nanoparticles on thermal conductivity of nanofluids
    • S. Nabi, and E. Shirani Simultaneous effects of Brownian motion and clustering of nanoparticles on thermal conductivity of nanofluids IJST 36 2012 53 68
    • (2012) IJST , vol.36 , pp. 53-68
    • Nabi, S.1    Shirani, E.2
  • 73
    • 75349099440 scopus 로고    scopus 로고
    • Effect of nanoparticle clustering on the effective thermal conductivity of concentrated silica colloids
    • C. Wu, T.J. Cho, J. Xu, D. Lee, B. Yang, and M.R. Zachariah Effect of nanoparticle clustering on the effective thermal conductivity of concentrated silica colloids Phys. Rev. E 81 2010 011406
    • (2010) Phys. Rev. E , vol.81 , pp. 011406
    • Wu, C.1    Cho, T.J.2    Xu, J.3    Lee, D.4    Yang, B.5    Zachariah, M.R.6
  • 74
    • 0035910140 scopus 로고    scopus 로고
    • Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)
    • P. Keblinski, S. Phillpot, S. Choi, and J. Eastman Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) Int. J. Heat Mass Transf. 45 2002 855 863
    • (2002) Int. J. Heat Mass Transf. , vol.45 , pp. 855-863
    • Keblinski, P.1    Phillpot, S.2    Choi, S.3    Eastman, J.4
  • 75
    • 84954824794 scopus 로고
    • Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen
    • V.D. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen Ann. Phys. 416 1935 636 664
    • (1935) Ann. Phys. , vol.416 , pp. 636-664
    • Bruggeman, V.D.1
  • 76
    • 0242582398 scopus 로고
    • Thermal conductivity of heterogeneous two-component systems
    • R. Hamilton, and O. Crosser Thermal conductivity of heterogeneous two-component systems Ind. Eng. Chem. Fundam. 1 1962 187 191
    • (1962) Ind. Eng. Chem. Fundam. , vol.1 , pp. 187-191
    • Hamilton, R.1    Crosser, O.2
  • 77
    • 33749063542 scopus 로고
    • Effective thermal conductivity of dispersed materials
    • A.P.E. Yamada, and A.P.T. Ota Effective thermal conductivity of dispersed materials Wärme-und Stoffübertragung 13 1980 27 37
    • (1980) Wärme-und Stoffübertragung , vol.13 , pp. 27-37
    • Yamada, A.P.E.1    Ota, A.P.T.2
  • 78
    • 84946448011 scopus 로고
    • On the interface between a fluid and a planar wall: theory and simulations of a hard sphere fluid at a hard wall
    • J. Henderson, and F. van Swol On the interface between a fluid and a planar wall: theory and simulations of a hard sphere fluid at a hard wall Mol. Phys. 51 1984 991 1010
    • (1984) Mol. Phys. , vol.51 , pp. 991-1010
    • Henderson, J.1    Van Swol, F.2
  • 79
    • 0038082987 scopus 로고    scopus 로고
    • The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model
    • W. Yu, and S. Choi The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model J. Nanoparticle Res. 5 2003 167 171
    • (2003) J. Nanoparticle Res. , vol.5 , pp. 167-171
    • Yu, W.1    Choi, S.2
  • 80
    • 13144250223 scopus 로고    scopus 로고
    • A model of thermal conductivity of nanofluids with interfacial shells
    • Q. Xue, and W.-M. Xu A model of thermal conductivity of nanofluids with interfacial shells Mater. Chem. Phys. 90 2005 298 301
    • (2005) Mater. Chem. Phys. , vol.90 , pp. 298-301
    • Xue, Q.1    Xu, W.-M.2
  • 81
    • 84888420156 scopus 로고    scopus 로고
    • A semi-analytical model for the thermal conductivity of nanofluids and determination of the nanolayer thickness
    • C. Tso, S. Fu, and C.Y. Chao A semi-analytical model for the thermal conductivity of nanofluids and determination of the nanolayer thickness Int. J. Heat Mass Transf. 70 2014 202 214
    • (2014) Int. J. Heat Mass Transf. , vol.70 , pp. 202-214
    • Tso, C.1    Fu, S.2    Chao, C.Y.3
  • 83
    • 18544377641 scopus 로고    scopus 로고
    • Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture
    • H. Xie, M. Fujii, and X. Zhang Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture Int. J. Heat Mass Transf. 48 2005 2926 2932
    • (2005) Int. J. Heat Mass Transf. , vol.48 , pp. 2926-2932
    • Xie, H.1    Fujii, M.2    Zhang, X.3
  • 84
    • 84859833656 scopus 로고    scopus 로고
    • Investigations on the nanolayer heat transfer in nanoparticles-in-liquid suspensions
    • E.C. Nsofor, and T. Gadge Investigations on the nanolayer heat transfer in nanoparticles-in-liquid suspensions ARPN J. Eng. Appl. Sci. 6 2011 21 28
    • (2011) ARPN J. Eng. Appl. Sci. , vol.6 , pp. 21-28
    • Nsofor, E.C.1    Gadge, T.2
  • 85
    • 0038717659 scopus 로고    scopus 로고
    • Effective conductivity of composites with spherical inclusions: effect of coating and detachment
    • S.Y. Lu, and J.L. Song Effective conductivity of composites with spherical inclusions: effect of coating and detachment J. Appl. Phys. 79 1996 609 618
    • (1996) J. Appl. Phys. , vol.79 , pp. 609-618
    • Lu, S.Y.1    Song, J.L.2
  • 86
    • 84983433953 scopus 로고    scopus 로고
    • The interfacial layer effect on thermal conductivity of nano-colloidal dispersions
    • R. Pasrija, and S. Srivastava The interfacial layer effect on thermal conductivity of nano-colloidal dispersions Int. J. Appl. Phys. Math. 4 1 January 2014
    • (2014) Int. J. Appl. Phys. Math. , vol.4 , Issue.1
    • Pasrija, R.1    Srivastava, S.2
  • 87
    • 84908219172 scopus 로고    scopus 로고
    • Effective thermal conductivity of nanofluids considering interfacial nano-shells
    • H. Jiang, H. Li, Q. Xu, and L. Shi Effective thermal conductivity of nanofluids considering interfacial nano-shells Mater. Chem. Phys. 148 2014 195 200
    • (2014) Mater. Chem. Phys. , vol.148 , pp. 195-200
    • Jiang, H.1    Li, H.2    Xu, Q.3    Shi, L.4
  • 88
    • 84924879397 scopus 로고    scopus 로고
    • A novel method to determine the thermal conductivity of interfacial layers surrounding the nanoparticles of a nanofluid
    • R. Pal A novel method to determine the thermal conductivity of interfacial layers surrounding the nanoparticles of a nanofluid Nanomaterials 4 2014 844 855
    • (2014) Nanomaterials , vol.4 , pp. 844-855
    • Pal, R.1
  • 89
    • 34447630661 scopus 로고    scopus 로고
    • Effects of various parameters on nanofluid thermal conductivity
    • S.P. Jang, and S.U. Choi Effects of various parameters on nanofluid thermal conductivity J. Heat Transf. 129 2007 617 623
    • (2007) J. Heat Transf. , vol.129 , pp. 617-623
    • Jang, S.P.1    Choi, S.U.2
  • 90
    • 16244411133 scopus 로고    scopus 로고
    • A new thermal conductivity model for nanofluids
    • J. Koo, and C. Kleinstreuer A new thermal conductivity model for nanofluids J. Nanoparticle Res. 6 2004 577 588
    • (2004) J. Nanoparticle Res. , vol.6 , pp. 577-588
    • Koo, J.1    Kleinstreuer, C.2
  • 93
    • 33745815300 scopus 로고    scopus 로고
    • Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids
    • R. Prasher, P. Bhattacharya, and P.E. Phelan Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids J. Heat Transf. 128 2006 588 595
    • (2006) J. Heat Transf. , vol.128 , pp. 588-595
    • Prasher, R.1    Bhattacharya, P.2    Phelan, P.E.3
  • 94
    • 64749113318 scopus 로고    scopus 로고
    • A combined model for the effective thermal conductivity of nanofluids
    • S. Murshed, K. Leong, and C. Yang A combined model for the effective thermal conductivity of nanofluids Appl. Therm. Eng. 29 2009 2477 2483
    • (2009) Appl. Therm. Eng. , vol.29 , pp. 2477-2483
    • Murshed, S.1    Leong, K.2    Yang, C.3
  • 95
    • 77955563747 scopus 로고    scopus 로고
    • A simple analytical model for calculating the effective thermal conductivity of nanofluids
    • N. Sohrabi, N. Masoumi, A. Behzadmehr, and S. Sarvari A simple analytical model for calculating the effective thermal conductivity of nanofluids Heat Transfer Asian Res. 39 2010 141 150
    • (2010) Heat Transfer Asian Res. , vol.39 , pp. 141-150
    • Sohrabi, N.1    Masoumi, N.2    Behzadmehr, A.3    Sarvari, S.4
  • 96
    • 80052056299 scopus 로고    scopus 로고
    • Modeling of thermal conductivity of nanofluids by modifying Maxwell's equation using cell model approach
    • S. Mehta, K.P. Chauhan, and S. Kanagaraj Modeling of thermal conductivity of nanofluids by modifying Maxwell's equation using cell model approach J. Nanoparticle Res. 13 2011 2791 2798
    • (2011) J. Nanoparticle Res. , vol.13 , pp. 2791-2798
    • Mehta, S.1    Chauhan, K.P.2    Kanagaraj, S.3
  • 97
    • 84875029293 scopus 로고    scopus 로고
    • Developing a novel form of thermal conductivity of nanofluids with Brownian motion effect by means of fractal geometry
    • B. Xiao, Y. Yang, and L. Chen Developing a novel form of thermal conductivity of nanofluids with Brownian motion effect by means of fractal geometry Powder Technol. 239 2013 409 414
    • (2013) Powder Technol. , vol.239 , pp. 409-414
    • Xiao, B.1    Yang, Y.2    Chen, L.3
  • 98
    • 84901603729 scopus 로고    scopus 로고
    • New Nusselt number correlations to predict the thermal conductivity of nanofluids
    • H. Zerradi, S. Ouaskit, A. Dezairi, H. Loulijat, and S. Mizani New Nusselt number correlations to predict the thermal conductivity of nanofluids Adv. Powder Technol. 25 2014 1124 1131
    • (2014) Adv. Powder Technol. , vol.25 , pp. 1124-1131
    • Zerradi, H.1    Ouaskit, S.2    Dezairi, A.3    Loulijat, H.4    Mizani, S.5
  • 100
    • 33748333479 scopus 로고    scopus 로고
    • Stochastic thermal transport of nanoparticle suspensions
    • Y. Xuan, Q. Li, X. Zhang, and M. Fujii Stochastic thermal transport of nanoparticle suspensions J. Appl. Phys. 100 2006 043507
    • (2006) J. Appl. Phys. , vol.100 , pp. 043507
    • Xuan, Y.1    Li, Q.2    Zhang, X.3    Fujii, M.4
  • 102
    • 80755176303 scopus 로고    scopus 로고
    • Contribution of Brownian motion in thermal conductivity of nanofluids
    • S.S. Murshed, and C.N. de Castro Contribution of Brownian motion in thermal conductivity of nanofluids Proc World Congress on Engineering 2011 1905 1909
    • (2011) Proc World Congress on Engineering , pp. 1905-1909
    • Murshed, S.S.1    De Castro, C.N.2
  • 104
    • 0029395122 scopus 로고
    • Role of micro-convection due to non-affine motion of particles in a mono-disperse suspension
    • S.K. Gupte, S.G. Advani, and P. Huq Role of micro-convection due to non-affine motion of particles in a mono-disperse suspension Int. J. Heat Mass Transf. 38 1995 2945 2958
    • (1995) Int. J. Heat Mass Transf. , vol.38 , pp. 2945-2958
    • Gupte, S.K.1    Advani, S.G.2    Huq, P.3
  • 105
    • 84922524139 scopus 로고    scopus 로고
    • A comprehensive model for the enhanced thermal conductivity of nanofluids
    • W. Wei A comprehensive model for the enhanced thermal conductivity of nanofluids J. Adv. Res. Phys. 3 2013
    • (2013) J. Adv. Res. Phys. , vol.3
    • Wei, W.1
  • 106
    • 43049105038 scopus 로고    scopus 로고
    • Thermal conductivity of nanofluids: effects of graded nanolayers and mutual interaction
    • X. Zhou, and L. Gao Thermal conductivity of nanofluids: effects of graded nanolayers and mutual interaction J. Appl. Phys. 103 2008 083503
    • (2008) J. Appl. Phys. , vol.103 , pp. 083503
    • Zhou, X.1    Gao, L.2
  • 107
    • 84903277831 scopus 로고    scopus 로고
    • Extended Maxwell model for the thermal conductivity of nanofluids that accounts for nonlocal heat transfer
    • M. Shaker, E. Birgersson, and A. Mujumdar Extended Maxwell model for the thermal conductivity of nanofluids that accounts for nonlocal heat transfer Int. J. Therm. Sci. 84 2014 260 266
    • (2014) Int. J. Therm. Sci. , vol.84 , pp. 260-266
    • Shaker, M.1    Birgersson, E.2    Mujumdar, A.3
  • 108
    • 0037394035 scopus 로고    scopus 로고
    • Aggregation structure and thermal conductivity of nanofluids
    • Y. Xuan, Q. Li, and W. Hu Aggregation structure and thermal conductivity of nanofluids AICHE J. 49 2003 1038 1043
    • (2003) AICHE J. , vol.49 , pp. 1038-1043
    • Xuan, Y.1    Li, Q.2    Hu, W.3
  • 109
    • 0029124624 scopus 로고
    • A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media
    • C. Hsu, P. Cheng, and K. Wong A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media J. Heat Transf. 117 1995 264 269
    • (1995) J. Heat Transf. , vol.117 , pp. 264-269
    • Hsu, C.1    Cheng, P.2    Wong, K.3
  • 110
    • 34250214988 scopus 로고    scopus 로고
    • The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles
    • Y. Feng, B. Yu, P. Xu, and M. Zou The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles J. Phys. D. Appl. Phys. 40 2007 3164
    • (2007) J. Phys. D. Appl. Phys. , vol.40 , pp. 3164
    • Feng, Y.1    Yu, B.2    Xu, P.3    Zou, M.4
  • 111
    • 39149138986 scopus 로고    scopus 로고
    • Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids
    • W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, and P. Keblinski Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids Int. J. Heat Mass Transf. 51 2008 1431 1438
    • (2008) Int. J. Heat Mass Transf. , vol.51 , pp. 1431-1438
    • Evans, W.1    Prasher, R.2    Fish, J.3    Meakin, P.4    Phelan, P.5    Keblinski, P.6
  • 112
    • 0031143265 scopus 로고    scopus 로고
    • Effective thermal conductivity of particulate composites with interfacial thermal resistance
    • C.-W. Nan, R. Birringer, D.R. Clarke, and H. Gleiter Effective thermal conductivity of particulate composites with interfacial thermal resistance J. Appl. Phys. 81 1997 6692 6699
    • (1997) J. Appl. Phys. , vol.81 , pp. 6692-6699
    • Nan, C.-W.1    Birringer, R.2    Clarke, D.R.3    Gleiter, H.4
  • 113
    • 0037570726 scopus 로고    scopus 로고
    • A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles
    • B.-X. Wang, L.-P. Zhou, and X.-F. Peng A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles Int. J. Heat Mass Transf. 46 2003 2665 2672
    • (2003) Int. J. Heat Mass Transf. , vol.46 , pp. 2665-2672
    • Wang, B.-X.1    Zhou, L.-P.2    Peng, X.-F.3
  • 114
    • 34547732411 scopus 로고    scopus 로고
    • Rheological behaviour of ethylene glycol based titania nanofluids
    • H. Chen, Y. Ding, Y. He, and C. Tan Rheological behaviour of ethylene glycol based titania nanofluids Chem. Phys. Lett. 444 2007 333 337
    • (2007) Chem. Phys. Lett. , vol.444 , pp. 333-337
    • Chen, H.1    Ding, Y.2    He, Y.3    Tan, C.4
  • 115
    • 71949122689 scopus 로고    scopus 로고
    • Experimental investigation of heat conduction mechanisms in nanofluids. Clue on clustering
    • J. Gao, R. Zheng, H. Ohtani, D. Zhu, and G. Chen Experimental investigation of heat conduction mechanisms in nanofluids. Clue on clustering Nano Lett. 9 2009 4128 4132
    • (2009) Nano Lett. , vol.9 , pp. 4128-4132
    • Gao, J.1    Zheng, R.2    Ohtani, H.3    Zhu, D.4    Chen, G.5
  • 116
    • 84874848569 scopus 로고    scopus 로고
    • Effect of aggregation on thermal conductivity and viscosity of nanofluids
    • S. Srivastava Effect of aggregation on thermal conductivity and viscosity of nanofluids Appl. Nanosci. 2 2012 325 331
    • (2012) Appl. Nanosci. , vol.2 , pp. 325-331
    • Srivastava, S.1
  • 117
    • 0000758954 scopus 로고
    • Interfacial transport in porous media: application to dc electrical conductivity of mortars
    • L.M. Schwartz, E.J. Garboczi, and D.P. Bentz Interfacial transport in porous media: application to dc electrical conductivity of mortars J. Appl. Phys. 78 1995 5898 5908
    • (1995) J. Appl. Phys. , vol.78 , pp. 5898-5908
    • Schwartz, L.M.1    Garboczi, E.J.2    Bentz, D.P.3
  • 118
    • 84867761092 scopus 로고    scopus 로고
    • An investigation into modelling thermal conductivity for alumina-water nanofluids
    • S. Mallick, A. Mishra, and L. Kundan An investigation into modelling thermal conductivity for alumina-water nanofluids Powder Technol. 233 2013 234 244
    • (2013) Powder Technol. , vol.233 , pp. 234-244
    • Mallick, S.1    Mishra, A.2    Kundan, L.3
  • 119
    • 84877101065 scopus 로고    scopus 로고
    • Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications
    • L. Syam Sundar, M.K. Singh, and A.C.M. Sousa Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications Int. Commun. Heat Mass Transfer 44 2013 7 14
    • (2013) Int. Commun. Heat Mass Transfer , vol.44 , pp. 7-14
    • Syam Sundar, L.1    Singh, M.K.2    Sousa, A.C.M.3
  • 120
    • 77955470128 scopus 로고    scopus 로고
    • The effect of alumina/water nanofluid particle size on thermal conductivity
    • T.-P. Teng, Y.-H. Hung, T.-C. Teng, H.-E. Mo, and H.-G. Hsu The effect of alumina/water nanofluid particle size on thermal conductivity Appl. Therm. Eng. 30 2010 2213 2218
    • (2010) Appl. Therm. Eng. , vol.30 , pp. 2213-2218
    • Teng, T.-P.1    Hung, Y.-H.2    Teng, T.-C.3    Mo, H.-E.4    Hsu, H.-G.5
  • 121
    • 84939480482 scopus 로고    scopus 로고
    • An improved model for prediction of the effective thermal conductivity of nanofluids
    • K. Abbaspoursani, M. Allahyari, and M. Rahmani An improved model for prediction of the effective thermal conductivity of nanofluids J. Eng. Technol. 58 2011 234 237
    • (2011) J. Eng. Technol. , vol.58 , pp. 234-237
    • Abbaspoursani, K.1    Allahyari, M.2    Rahmani, M.3
  • 122
    • 78650621663 scopus 로고    scopus 로고
    • Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network
    • M. Hojjat, S.G. Etemad, R. Bagheri, and J. Thibault Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network Int. J. Heat Mass Transf. 54 2011 1017 1023
    • (2011) Int. J. Heat Mass Transf. , vol.54 , pp. 1017-1023
    • Hojjat, M.1    Etemad, S.G.2    Bagheri, R.3    Thibault, J.4
  • 123
    • 78349304474 scopus 로고    scopus 로고
    • Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks
    • M.M. Papari, F. Yousefi, J. Moghadasi, H. Karimi, and A. Campo Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks Int. J. Therm. Sci. 50 2011 44 52
    • (2011) Int. J. Therm. Sci. , vol.50 , pp. 44-52
    • Papari, M.M.1    Yousefi, F.2    Moghadasi, J.3    Karimi, H.4    Campo, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.