-
1
-
-
0001435905
-
Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles
-
Eastman J., Choi S., Li S., Yu W., Thompson L. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 2001, 78(6):718-720.
-
(2001)
Appl. Phys. Lett.
, vol.78
, Issue.6
, pp. 718-720
-
-
Eastman, J.1
Choi, S.2
Li, S.3
Yu, W.4
Thompson, L.5
-
2
-
-
0032043092
-
Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles
-
Pak B.C., Cho Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. Int. J. 1998, 11(2):151-170.
-
(1998)
Exp. Heat Transf. Int. J.
, vol.11
, Issue.2
, pp. 151-170
-
-
Pak, B.C.1
Cho, Y.I.2
-
3
-
-
84881241983
-
Radiative properties of nanofluids
-
Said Z., Sajid M., Saidur R., Kamalisarvestani M., Rahim N. Radiative properties of nanofluids. Int. Commun. Heat Mass Transf. 2013, 46:74-84.
-
(2013)
Int. Commun. Heat Mass Transf.
, vol.46
, pp. 74-84
-
-
Said, Z.1
Sajid, M.2
Saidur, R.3
Kamalisarvestani, M.4
Rahim, N.5
-
6
-
-
68049117335
-
Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies
-
Otanicar T.P., Golden J.S. Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies. Environ. Sci. Technol. 2009, 43(15):6082-6087.
-
(2009)
Environ. Sci. Technol.
, vol.43
, Issue.15
, pp. 6082-6087
-
-
Otanicar, T.P.1
Golden, J.S.2
-
7
-
-
79952592696
-
Nanofluid-based direct absorption solar collector
-
Otanicar T.P., Phelan P.E., Prasher R.S., Rosengarten G., Taylor R.A. Nanofluid-based direct absorption solar collector. J. Renew. Sust. Energ. 2010, 2:033102.
-
(2010)
J. Renew. Sust. Energ.
, vol.2
, pp. 033102
-
-
Otanicar, T.P.1
Phelan, P.E.2
Prasher, R.S.3
Rosengarten, G.4
Taylor, R.A.5
-
10
-
-
82655187063
-
Nanofluid optical property characterization: towards efficient direct absorption solar collectors
-
Taylor R.A., Phelan P.E., Otanicar T.P., Adrian R., Prasher R. Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Res. Lett. 2011, 6(1):1-11.
-
(2011)
Nanoscale Res. Lett.
, vol.6
, Issue.1
, pp. 1-11
-
-
Taylor, R.A.1
Phelan, P.E.2
Otanicar, T.P.3
Adrian, R.4
Prasher, R.5
-
11
-
-
84881238284
-
Solar water heating using nanofluids-a comprehensive overview and environmental impact analysis
-
Tiwari A.K., Ghosh P., Sarkar J. Solar water heating using nanofluids-a comprehensive overview and environmental impact analysis. Int. J. Emerg. Technol. Adv. Eng. 2013, 3(3):221-224.
-
(2013)
Int. J. Emerg. Technol. Adv. Eng.
, vol.3
, Issue.3
, pp. 221-224
-
-
Tiwari, A.K.1
Ghosh, P.2
Sarkar, J.3
-
12
-
-
84864283515
-
Evaluation of the effect of nanofluid-based absorbers on direct solar collector
-
Saidur R., Meng T., Said Z., Hasanuzzaman M., Kamyar A. Evaluation of the effect of nanofluid-based absorbers on direct solar collector. Int. J. Heat Mass Transf. 2012, 55(21-22):5899-5907.
-
(2012)
Int. J. Heat Mass Transf.
, vol.55
, Issue.21-22
, pp. 5899-5907
-
-
Saidur, R.1
Meng, T.2
Said, Z.3
Hasanuzzaman, M.4
Kamyar, A.5
-
14
-
-
81155148298
-
2 nanofluids
-
2 nanofluids. Exp. Thermal Fluid Sci. 2011, 36:65-71.
-
(2011)
Exp. Thermal Fluid Sci.
, vol.36
, pp. 65-71
-
-
Bobbo, S.1
Fedele, L.2
Benetti, A.3
Colla, L.4
Fabrizio, M.5
Pagura, C.6
Barison, S.7
-
17
-
-
78149442650
-
MgO nanofluids: higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles
-
Xie H., Yu W., Chen W. MgO nanofluids: higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles. J. Exp. Nanosci. 2010, 5(5):463-472.
-
(2010)
J. Exp. Nanosci.
, vol.5
, Issue.5
, pp. 463-472
-
-
Xie, H.1
Yu, W.2
Chen, W.3
-
18
-
-
70349728411
-
2 nanofluids
-
2 nanofluids. Int. J. Thermophys. 2009, 30(4):1213-1226.
-
(2009)
Int. J. Thermophys.
, vol.30
, Issue.4
, pp. 1213-1226
-
-
Turgut, A.1
Tavman, I.2
Chirtoc, M.3
Schuchmann, H.4
Sauter, C.5
Tavman, S.6
-
19
-
-
33750694638
-
Heat transfer characteristics of nanofluids: a review
-
Wang X.Q., Mujumdar A.S. Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 2007, 46(1):1-19.
-
(2007)
Int. J. Therm. Sci.
, vol.46
, Issue.1
, pp. 1-19
-
-
Wang, X.Q.1
Mujumdar, A.S.2
-
20
-
-
0030711234
-
Enhanced thermal conductivity through the development of nanofluids
-
Cambridge Univ Press
-
Eastman J., Choi U., Li S., Thompson L., Lee S. Enhanced thermal conductivity through the development of nanofluids. Materials Research Society Symposium Proceedings 1997, Cambridge Univ Press.
-
(1997)
Materials Research Society Symposium Proceedings
-
-
Eastman, J.1
Choi, U.2
Li, S.3
Thompson, L.4
Lee, S.5
-
21
-
-
0033339009
-
Thermal conductivity of nanoparticle-fluid mixture
-
Wang X., Xu X.S., Choi S.U. Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Transf. 1999, 13(4):474-480.
-
(1999)
J. Thermophys. Heat Transf.
, vol.13
, Issue.4
, pp. 474-480
-
-
Wang, X.1
Xu, X.S.2
Choi, S.U.3
-
22
-
-
0007644403
-
Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles
-
Masuda H., Ebata A., Teramae K., Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei 1993, 7(2):227-233.
-
(1993)
Netsu Bussei
, vol.7
, Issue.2
, pp. 227-233
-
-
Masuda, H.1
Ebata, A.2
Teramae, K.3
Hishinuma, N.4
-
23
-
-
0032825295
-
Measuring thermal conductivity of fluids containing oxide nanoparticles
-
Lee S., Choi S.U., Li S., Eastman J. Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transf. 1999, 121(2).
-
(1999)
J. Heat Transf.
, vol.121
, Issue.2
-
-
Lee, S.1
Choi, S.U.2
Li, S.3
Eastman, J.4
-
24
-
-
84862332724
-
Experimental investigations of the viscosity of nanofluids at low temperatures
-
Aladag B., Halelfadl S., Doner N., Maré T., Duret S., Estellé P. Experimental investigations of the viscosity of nanofluids at low temperatures. Appl. Energy 2012, 97:876-880.
-
(2012)
Appl. Energy
, vol.97
, pp. 876-880
-
-
Aladag, B.1
Halelfadl, S.2
Doner, N.3
Maré, T.4
Duret, S.5
Estellé, P.6
-
25
-
-
36248987328
-
Temperature and particle-size dependent viscosity data for water-based nanofluids-hysteresis phenomenon
-
Nguyen C., Desgranges F., Roy G., Galanis N., Mare T., Boucher S., Angue Mintsa H. Temperature and particle-size dependent viscosity data for water-based nanofluids-hysteresis phenomenon. Int. J. Heat Fluid Flow 2007, 28(6):1492-1506.
-
(2007)
Int. J. Heat Fluid Flow
, vol.28
, Issue.6
, pp. 1492-1506
-
-
Nguyen, C.1
Desgranges, F.2
Roy, G.3
Galanis, N.4
Mare, T.5
Boucher, S.6
Angue Mintsa, H.7
-
26
-
-
84885943433
-
New viscosity data for CuO-water nanofluid-the hysteresis phenomenon revisited
-
Nguyen C.T., Galanis N., Maré T., Eveillard E. New viscosity data for CuO-water nanofluid-the hysteresis phenomenon revisited. Adv. Sci. Technol. 2013, 81:101-106.
-
(2013)
Adv. Sci. Technol.
, vol.81
, pp. 101-106
-
-
Nguyen, C.T.1
Galanis, N.2
Maré, T.3
Eveillard, E.4
-
27
-
-
84864501423
-
Application of nanofluids in heat exchangers: a review
-
Huminic G., Huminic A. Application of nanofluids in heat exchangers: a review. Renew. Sust. Energ. Rev. 2012, 16(8):5625-5638.
-
(2012)
Renew. Sust. Energ. Rev.
, vol.16
, Issue.8
, pp. 5625-5638
-
-
Huminic, G.1
Huminic, A.2
-
28
-
-
44649201074
-
Potential of 'nanofluids' to further intensify microreactors
-
Fan X., Chen H., Ding Y., Plucinski P.K., Lapkin A.A. Potential of 'nanofluids' to further intensify microreactors. Green Chem. 2008, 10(6):670-677.
-
(2008)
Green Chem.
, vol.10
, Issue.6
, pp. 670-677
-
-
Fan, X.1
Chen, H.2
Ding, Y.3
Plucinski, P.K.4
Lapkin, A.A.5
-
32
-
-
33947152489
-
2 nanoparticles (nanofluids) flowing upward through a vertical pipe
-
2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int. J. Heat Mass Transf. 2007, 50(11):2272-2281.
-
(2007)
Int. J. Heat Mass Transf.
, vol.50
, Issue.11
, pp. 2272-2281
-
-
He, Y.1
Jin, Y.2
Chen, H.3
Ding, Y.4
Cang, D.5
Lu, H.6
-
34
-
-
84905352328
-
Calculation of the viscosity-coefficient of a liquid in which a large number of small spheres are suspended in irregular distribution
-
Einstein A. Calculation of the viscosity-coefficient of a liquid in which a large number of small spheres are suspended in irregular distribution. Ann. Phys. Leipzig 1906, 19:286-306.
-
(1906)
Ann. Phys. Leipzig
, vol.19
, pp. 286-306
-
-
Einstein, A.1
-
35
-
-
0012452966
-
The viscosity of concentrated suspensions and solutions
-
Brinkman H. The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 1952, 5(20):71.
-
(1952)
J. Chem. Phys.
, vol.5
, Issue.20
, pp. 71
-
-
Brinkman, H.1
-
36
-
-
0017551342
-
The effect of Brownian motion on the bulk stress in a suspension of spherical particles
-
Batchelor G. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 1977, 83(01):97-117.
-
(1977)
J. Fluid Mech.
, vol.83
, Issue.1
, pp. 97-117
-
-
Batchelor, G.1
-
37
-
-
70649105480
-
Effect of nanofluid variable properties on natural convection in enclosures
-
Abu-Nada E., Masoud Z., Oztop H.F., Campo A. Effect of nanofluid variable properties on natural convection in enclosures. Int. J. Therm. Sci. 2010, 49(3):479-491.
-
(2010)
Int. J. Therm. Sci.
, vol.49
, Issue.3
, pp. 479-491
-
-
Abu-Nada, E.1
Masoud, Z.2
Oztop, H.F.3
Campo, A.4
-
38
-
-
77954887581
-
A new dimensionless group model for determining the viscosity of nanofluids
-
Masoud Hosseini S., Moghadassi A., Henneke D.E. A new dimensionless group model for determining the viscosity of nanofluids. J. Therm. Anal. Calorim. 2010, 100(3):873-877.
-
(2010)
J. Therm. Anal. Calorim.
, vol.100
, Issue.3
, pp. 873-877
-
-
Masoud Hosseini, S.1
Moghadassi, A.2
Henneke, D.E.3
-
39
-
-
4243085632
-
Heat transfer behaviours of nanofluids in a uniformly heated tube
-
Maiga S.E.B., Nguyen C.T., Galanis N., Roy G. Heat transfer behaviours of nanofluids in a uniformly heated tube. Superlattice. Microst. 2004, 35(3):543-557.
-
(2004)
Superlattice. Microst.
, vol.35
, Issue.3
, pp. 543-557
-
-
Maiga, S.E.B.1
Nguyen, C.T.2
Galanis, N.3
Roy, G.4
-
40
-
-
0029244588
-
Some aspects of a PV/T collector/forced circulation flat plate solar water heater with solar cells
-
Garg H., Agarwal R. Some aspects of a PV/T collector/forced circulation flat plate solar water heater with solar cells. Energy Convers. Manag. 1995, 36(2):87-99.
-
(1995)
Energy Convers. Manag.
, vol.36
, Issue.2
, pp. 87-99
-
-
Garg, H.1
Agarwal, R.2
-
43
-
-
2942694254
-
Role of Brownian motion in the enhanced thermal conductivity of nanofluids
-
Jang S.P., Choi S.U. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 2004, 84(21):4316-4318.
-
(2004)
Appl. Phys. Lett.
, vol.84
, Issue.21
, pp. 4316-4318
-
-
Jang, S.P.1
Choi, S.U.2
-
44
-
-
57149136576
-
A review on nanofluids-part I: theoretical and numerical investigations
-
Wang X.Q., Mujumdar A.S. A review on nanofluids-part I: theoretical and numerical investigations. Braz. J. Chem. Eng. 2008, 25(4):613-630.
-
(2008)
Braz. J. Chem. Eng.
, vol.25
, Issue.4
, pp. 613-630
-
-
Wang, X.Q.1
Mujumdar, A.S.2
-
45
-
-
84862533951
-
Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles
-
Fedele L., Colla L., Bobbo S. Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles. Int. J. Refrig. 2012, 35(5):1359-1366.
-
(2012)
Int. J. Refrig.
, vol.35
, Issue.5
, pp. 1359-1366
-
-
Fedele, L.1
Colla, L.2
Bobbo, S.3
-
46
-
-
0036806143
-
Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid
-
Xie H., Wang J., Xi T., Liu Y., Ai F. Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid. J. Mater. Sci. Lett. 2002, 21(19):1469-1471.
-
(2002)
J. Mater. Sci. Lett.
, vol.21
, Issue.19
, pp. 1469-1471
-
-
Xie, H.1
Wang, J.2
Xi, T.3
Liu, Y.4
Ai, F.5
-
48
-
-
32244446247
-
Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)
-
Ding Y., Alias H., Wen D., Williams R.A. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int. J. Heat Mass Transf. 2006, 49(1):240-250.
-
(2006)
Int. J. Heat Mass Transf.
, vol.49
, Issue.1
, pp. 240-250
-
-
Ding, Y.1
Alias, H.2
Wen, D.3
Williams, R.A.4
-
49
-
-
30344457064
-
Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol
-
Kwak K., Kim C. Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea Aust. Rheol. J. 2005, 17(2):35-40.
-
(2005)
Korea Aust. Rheol. J.
, vol.17
, Issue.2
, pp. 35-40
-
-
Kwak, K.1
Kim, C.2
-
50
-
-
33749265111
-
Measurements of nanofluid viscosity and its implications for thermal applications
-
Prasher R., Song D., Wang J., Phelan P. Measurements of nanofluid viscosity and its implications for thermal applications. Appl. Phys. Lett. 2006, 89(13):133108.
-
(2006)
Appl. Phys. Lett.
, vol.89
, Issue.13
, pp. 133108
-
-
Prasher, R.1
Song, D.2
Wang, J.3
Phelan, P.4
-
51
-
-
35348844028
-
Rheological behaviour of nanofluids
-
Chen H., Ding Y., Tan C. Rheological behaviour of nanofluids. New J. Phys. 2007, 9(10):367.
-
(2007)
New J. Phys.
, vol.9
, Issue.10
, pp. 367
-
-
Chen, H.1
Ding, Y.2
Tan, C.3
-
52
-
-
78449239370
-
Heat transfer and rheological behaviour of nanofluids-a review
-
Springer
-
Chen H., Ding Y. Heat transfer and rheological behaviour of nanofluids-a review. Advances in Transport Phenomena 2009, 135-177. Springer.
-
(2009)
Advances in Transport Phenomena
, pp. 135-177
-
-
Chen, H.1
Ding, Y.2
-
53
-
-
78349311709
-
Heat transfer enhancement and pumping power in confined radial flows using nanoparticle suspensions (nanofluids)
-
Gherasim I., Roy G., Nguyen C.T., Vo-Ngoc D. Heat transfer enhancement and pumping power in confined radial flows using nanoparticle suspensions (nanofluids). Int. J. Therm. Sci. 2011, 50(3):369-377.
-
(2011)
Int. J. Therm. Sci.
, vol.50
, Issue.3
, pp. 369-377
-
-
Gherasim, I.1
Roy, G.2
Nguyen, C.T.3
Vo-Ngoc, D.4
|