-
1
-
-
0029427666
-
Enhancing thermal conductivity of fluids with nanoparticles
-
MD66, ASME
-
Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. Tech. Rep. FED, vol. 231, MD66, ASME; 1995.
-
(1995)
Tech. Rep. FED
, vol.231
-
-
Choi, S.U.S.1
-
3
-
-
33847322946
-
Study of thermal conductivity of nanofluids for the application of heat transfer fluids
-
Yoo DH, Hong KS, Yang HS. Study of thermal conductivity of nanofluids for the application of heat transfer fluids. thermochim Acta 2007;455:66-9.
-
(2007)
Thermochim Acta
, vol.455
, pp. 66-69
-
-
Yoo, D.H.1
Hong, K.S.2
Yang, H.S.3
-
4
-
-
0040451902
-
Thermal conductivity of liquids: New determinations for seven liquids and appraisal of existing values
-
Challoner AR, Powell RW. thermal conductivity of liquids: new determinations for seven liquids and appraisal of existing values. Proc R Soc Lond Ser A 1956;2381212):90-106.
-
(1956)
Proc R Soc Lond Ser A
, vol.238
, Issue.12
, pp. 90-106
-
-
Challoner, A.R.1
Powell, R.W.2
-
5
-
-
64649084798
-
Prediction of thermal conductivity of ethylene glycol-Water solutions by using artificial neural networks
-
doi: 10.1016/j.apenergy.2008.12.020
-
Kurt H, Kayfeci M. Prediction of thermal conductivity of ethylene glycol-water solutions by using artificial neural networks. Appl Energy 2009. doi: 10.1016/ j.apenergy.2008.12.020 see also URLhttp://www.sciencedirect.com/.
-
(2009)
Appl Energy
-
-
Kurt, H.1
Kayfeci, M.2
-
6
-
-
0041034454
-
-
editors New York and London: Plenum Press
-
Roetzel W, Prinzen S, Xuan Y. in: Cremers CY, Fine HA, editors. Measurement of thermal diffusivity using temperature oscillations thermal conductivity, vol. 21. New York and London: Plenum Press; 1990. p. 201-7.
-
(1990)
Measurement of Thermal Diffusivity Using Temperature Oscillations Thermal Conductivity
, vol.21
, pp. 201-207
-
-
Roetzel, W.1
Prinzen, S.2
Xuan, Y.3
Cremers, C.Y.4
Fine, H.A.5
-
7
-
-
36549099049
-
Thermal conductivity measurement from 30 to 700 K: The 3v method
-
Cahill DG. thermal conductivity measurement from 30 to 700 K: The 3v method. Rev Sci instrum 1990;61:802-8.
-
(1990)
Rev Sci instrum
, vol.61
, pp. 802-808
-
-
Cahill, D.G.1
-
9
-
-
0034069053
-
Heat transfer enhancement of nanofluids
-
DOI 10.1016/S0142-727X(99)00067-3, PII S0142727X99000673
-
Xuan Y, Li Q. Heat transfer enhancement of nanofluids. int J Heat Fluid Flow 2000;21:58-64. (Pubitemid 30192457)
-
(2000)
International Journal of Heat and Fluid Flow
, vol.21
, Issue.1
, pp. 58-64
-
-
Xuan, Y.1
Li, Q.2
-
10
-
-
0035473529
-
Anomalous thermal conductivity enhancement in nanotube suspensions
-
DOI 10.1063/1.1408272
-
Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA. Anomalously thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 2001;79:2252-4. (Pubitemid 33600817)
-
(2001)
Applied Physics Letters
, vol.79
, Issue.14
, pp. 2252-2254
-
-
Choi, S.U.S.1
Zhang, Z.G.2
Yu, W.3
Lockwood, F.E.4
Grulke, E.A.5
-
11
-
-
33646739701
-
Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions nanofluids)
-
Li CH, Peterson GP. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions nanofluids). J Appl Phys 2006;99. 0843 14.
-
(2006)
J Appl Phys
, vol.99
, Issue.843
, pp. 14
-
-
Li, C.H.1
Peterson, G.P.2
-
13
-
-
0242582398
-
Thermal conductivity of heterogeneous two-component systems
-
Hamilton RL, Crosser OK. thermal conductivity of heterogeneous two-component systems. ind Eng Chem Fundam 1962;13):187-91.
-
(1962)
Ind Eng Chem Fundam
, vol.1
, Issue.3
, pp. 187-191
-
-
Hamilton, R.L.1
Crosser, O.K.2
-
14
-
-
0035910140
-
Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids)
-
DOI 10.1016/S0017-9310(01)00175-2, PII S0017931001001752
-
Keblinski P, Phillpot RS, Choi US, Eastman JA. Mechanism of heat flow in suspensions of nano-sized particles nanofluids). int J Heat Mass Trans 2002;45:855-63. (Pubitemid 34034421)
-
(2002)
International Journal of Heat and Mass Transfer
, vol.45
, Issue.4
, pp. 855-863
-
-
Keblinski, P.1
Phillpot, S.R.2
Choi, S.U.S.3
Eastman, J.A.4
-
15
-
-
47049124350
-
Production and dispersion stability of nanoparticles in nanofluids
-
Hwang Y, Lee JK, Lee JK, Jeong YM, Cheong SI, Ahn YC, et al. Production and dispersion stability of nanoparticles in nanofluids. Powder Technol 2008;186:145-53.
-
(2008)
Powder Technol
, vol.186
, pp. 145-153
-
-
Hwang, Y.1
Lee, J.K.2
Lee, J.K.3
Jeong, Y.M.4
Cheong, S.I.5
Ahn, Y.C.6
-
16
-
-
3242670860
-
A novel one-step chemical method for preparation of copper nanofluids
-
DOI 10.1016/j.jcis.2004.04.026, PII S0021979704003893
-
Zhu H, Lin Y, Yin Y. A novel one-step chemical method for preparation of copper nanofluids. J Colloid interface Sci 2004;227:100-3. (Pubitemid 38954108)
-
(2004)
Journal of Colloid and Interface Science
, vol.277
, Issue.1
, pp. 100-103
-
-
Zhu, H.-T.1
Lin, Y.-S.2
Yin, Y.-S.3
-
17
-
-
34247589252
-
2Al nanoparticle dispersed water and ethylene glycol based nanofluid
-
DOI 10.1016/j.mseb.2007.01.048, PII S0921510707000748
-
Chopkar M, Kumar S, Bhandari DR, Das PK, Manna I. Development and characterization of Al70Cu30 and Al70Ag30 nanoparticle dispersed water and ethylene glycol based nanofluids. Mater Sc Eng B 2007;139:141-8. (Pubitemid 46669926)
-
(2007)
Materials Science and Engineering B: Solid-State Materials for Advanced Technology
, vol.139
, Issue.2-3
, pp. 141-148
-
-
Chopkar, M.1
Kumar, S.2
Bhandari, D.R.3
Das, P.K.4
Manna, I.5
-
18
-
-
0001435905
-
Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles
-
DOI 10.1063/1.1341218
-
Eastman JA, Choi SUS, Li S, Yu W. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 2001;786):718-20. doi: 10.1063/1.1341218. (Pubitemid 33630327)
-
(2001)
Applied Physics Letters
, vol.78
, Issue.6
, pp. 718-720
-
-
Eastman, J.A.1
Choi, S.U.S.2
Li, S.3
Yu, W.4
Thompson, L.J.5
-
19
-
-
20444450512
-
Study of the enhanced thermal conductivity of Fe nanofluids
-
Hong TK, Yang HS, Choi CJ. Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys 2005;97. 064311 1-4.
-
(2005)
J Appl Phys
, vol.97
, pp. 0643111-0643114
-
-
Hong, T.K.1
Yang, H.S.2
Choi, C.J.3
-
20
-
-
33747046393
-
Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method
-
DOI 10.1016/j.ijheatmasstransfer.2006.02.012, PII S0017931006001347
-
Liu M-S, Lin MC-C, Tsai CY, Wang C-C. Enhancement of thermal conductivity with cu for nanofluids using chemical reduction method. int J Heat Mass Transfer 2006;49:3028-33. (Pubitemid 44209088)
-
(2006)
International Journal of Heat and Mass Transfer
, vol.49
, Issue.17-18
, pp. 3028-3033
-
-
Liu, M.-S.1
Lin, M.C.-C.2
Tsai, C.Y.3
Wang, C.-C.4
-
21
-
-
0034069053
-
Heat transfer enhancement of nanofluids
-
DOI 10.1016/S0142-727X(99)00067-3, PII S0142727X99000673
-
Xuan Y, Li Q. Heat transfer enhancement of nanofluids. int J Heat Mass Transfer 2000;21:58-64. (Pubitemid 30192457)
-
(2000)
International Journal of Heat and Fluid Flow
, vol.21
, Issue.1
, pp. 58-64
-
-
Xuan, Y.1
Li, Q.2
-
23
-
-
13644261470
-
Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow
-
DOI 10.1016/j.ijheatmasstransfer.2004.09.038, PII S0017931004004508
-
Yang Y, Zhong ZG, Grulke EA, anderson WB,Wu G. Heat transfer properties of nanoparticle-in-fluid dispersion nanofluids) in laminar flow. int J Heat Mass Trans 2005;48:1107-16. (Pubitemid 40231271)
-
(2005)
International Journal of Heat and Mass Transfer
, vol.48
, Issue.6
, pp. 1107-1116
-
-
Yang, Y.1
Zhang, Z.G.2
Grulke, E.A.3
Anderson, W.B.4
Wu, G.5
-
24
-
-
29444436413
-
Formulation of nanofluids for natural convective heat transfer applications
-
DOI 10.1016/j.ijheatfluidflow.2005.10.005, PII S0142727X05000871
-
Wen D, Ding Y. Formulation of nanofluids for natural convective heat transfer applications. int J Heat Fluid Flow 2005;266):855-64. (Pubitemid 43009130)
-
(2005)
International Journal of Heat and Fluid Flow
, vol.26
, Issue.6
, pp. 855-864
-
-
Wen, D.1
Ding, Y.2
-
26
-
-
62849115058
-
2 nanofluids flowing through a straight tube under the laminar flow conditions
-
2 nanofluids flowing through a straight tube under the laminar flow conditions. Appl therm Eng 2009;2910):1965-72.
-
(2009)
Appl therm Eng
, vol.29
, Issue.10
, pp. 1965-1972
-
-
He, Y.1
Men, Y.2
Zhao, Y.3
Lu, H.4
Ding, Y.5
-
27
-
-
33645854344
-
Experimental investigation of oxide nanofluids laminar flow convective heat transfer
-
Heris SZ, Etemad SG, Esfahany MN. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. int Commun Heat Mass Transfer 2006;334):529-35.
-
(2006)
Int Commun Heat Mass Transfer
, vol.33
, Issue.4
, pp. 529-535
-
-
Heris, S.Z.1
Etemad, S.G.2
Esfahany, M.N.3
-
28
-
-
33751508108
-
A critical review of convective heat transfer of nanofluids
-
DOI 10.1016/j.rser.2005.06.005, PII S1364032105000626
-
Daungthongsuk W, Wongwises S. A critical review of convective heat transfer nanofluids. Renew Sust Eng Rev 2007;11:797-817. (Pubitemid 44829992)
-
(2007)
Renewable and Sustainable Energy Reviews
, vol.11
, Issue.5
, pp. 797-817
-
-
Daungthongsuk, W.1
Wongwises, S.2
-
29
-
-
56949086588
-
Forced convective heat transfer of nanofluids in microchannels
-
Jung J-Y, Oh H-S, Kwak H-Y. Forced convective heat transfer of nanofluids in microchannels. int J Heat Mass Transfer 2009;521-2):466-72.
-
(2009)
Int J Heat Mass Transfer
, vol.52
, Issue.1-2
, pp. 466-472
-
-
Jung, J.-Y.1
Oh, H.-S.2
Kwak, H.-Y.3
-
30
-
-
59049102917
-
Laminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluids
-
Rea U, McKrell T, Hu L-w, Buongiorno J. Laminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluids. int J Heat Mass Transfer 2009;527-8):2042-8.
-
(2009)
Int J Heat Mass Transfer
, vol.52
, Issue.7-8
, pp. 2042-2048
-
-
Rea, U.1
McKrell, T.2
Hu L-w3
Buongiorno, J.4
-
31
-
-
35748959642
-
Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface
-
DOI 10.1016/j.ijmultiphaseflow.2007.06.009, PII S0301932207001000
-
Liu Z, Xiong J, Bao R. Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface. int J Multiphase Flow 2007;33:1284-95. (Pubitemid 350051166)
-
(2007)
International Journal of Multiphase Flow
, vol.33
, Issue.12
, pp. 1284-1295
-
-
Liu, Z.-h.1
Xiong, J.-g.2
Bao, R.3
-
32
-
-
38049173126
-
Study on pool boiling heat transfer of nano-particle suspensions on plate surface
-
Shi MH, Shuai MQ, Chen ZQ, Li Q, Xuan YM. Study on pool boiling heat transfer of nano-particle suspensions on plate surface. J Enhanced Heat Transfer 2007;143):223-31.
-
(2007)
J Enhanced Heat Transfer
, vol.14
, Issue.3
, pp. 223-231
-
-
Shi, M.H.1
Shuai, M.Q.2
Chen, Z.Q.3
Li, Q.4
Xuan, Y.M.5
-
34
-
-
17944373694
-
3-water nano-fluids from a plain surface in a pool
-
3-water nano-fluids from a plain surface in a pool. int JHeat Mass Transfer 2005;4812):2420-8.
-
(2005)
Int J Heat Mass Transfer
, vol.48
, Issue.12
, pp. 2420-2428
-
-
Bang, I.C.1
Chang, S.H.2
-
35
-
-
28444458446
-
Role of ions in pool boiling heat transfer of pure and silica nanofluids
-
Milanova D, Kumar R. Role of ions in pool boiling heat transfer of pure and silica nanofluids. Appl Phys Lett 2005;87:185-94.
-
(2005)
Appl Phys Lett
, vol.87
, pp. 185-194
-
-
Milanova, D.1
Kumar, R.2
-
37
-
-
0242580836
-
Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer
-
You SM, Kim JH, Kim KH. Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl Phys Lett 2003;83:3374-6.
-
(2003)
Appl Phys Lett
, vol.83
, pp. 337-346
-
-
You, S.M.1
Kim, J.H.2
Kim, K.H.3
-
39
-
-
56649120696
-
New temperature dependent thermal conductivity data for water based nanofluids
-
Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water based nanofluids. int J therm Sci 2009;48:363-71.
-
(2009)
Int J therm Sci
, vol.48
, pp. 363-371
-
-
Mintsa, H.A.1
Roy, G.2
Nguyen, C.T.3
Doucet, D.4
-
41
-
-
68749110719
-
Experimental determination of thermal conductivity of three nanofluids and development of new correlations
-
Vajjha RS, Das DK. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. int J Heat Mass Trans 2009;52:4675-82.
-
(2009)
Int J Heat Mass Trans
, vol.52
, pp. 4675-4682
-
-
Vajjha, R.S.1
Das, D.K.2
-
42
-
-
39449114611
-
Investigations of thermal conductivity and viscosity of nanofluids
-
DOI 10.1016/j.ijthermalsci.2007.05.004, PII S1290072907001263
-
Murshed SMS, Leong KC, Yang C. investigations of thermal conductivity and viscosity of nanofluids. int J therm Sci 2008;475):560-8. (Pubitemid 351273651)
-
(2008)
International Journal of Thermal Sciences
, vol.47
, Issue.5
, pp. 560-568
-
-
Murshed, S.M.S.1
Leong, K.C.2
Yang, C.3
-
43
-
-
67349152677
-
Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid
-
Yu W, Xie H, Chen L, Li Y. investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. thermochim Acta 2009;4911-2):92-6.
-
(2009)
Thermochim Acta
, vol.491
, Issue.1-2
, pp. 92-96
-
-
Yu, W.1
Xie, H.2
Chen, L.3
Li, Y.4
-
44
-
-
17044364634
-
Experiments using a simple thermal comparator for measurement of thermal conductivity, surface roughness and thickness of foils or of surface deposits
-
Powell RW. Experiments using a simple thermal comparator for measurement of thermal conductivity, surface roughness and thickness of foils or of surface deposits. J Sci instrum 1957;34:485-92.
-
(1957)
J Sci instrum
, vol.34
, pp. 485-492
-
-
Powell, R.W.1
-
45
-
-
0010197768
-
Non-steady state measurements of thermal conductivities of liquids polyphenyls
-
Horrocks JK, McLaughlin E. Non-steady state measurements of thermal conductivities of liquids polyphenyls. Proc R Soc Lond 1963;273A):259-74.
-
(1963)
Proc R Soc Lond
, vol.273 A
, pp. 259-274
-
-
Horrocks, J.K.1
McLaughlin, E.2
-
47
-
-
33947722121
-
Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles
-
DOI 10.1016/j.expthermflusci.2006.06.009, PII S0894177706000951
-
Zhang X, Gu H, Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp therm Fluid Sci 2007;31:593-9. (Pubitemid 46507722)
-
(2007)
Experimental Thermal and Fluid Science
, vol.31
, Issue.6
, pp. 593-599
-
-
Zhang, X.1
Gu, H.2
Fujii, M.3
-
48
-
-
31144453694
-
Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles
-
Hong KS, Hong TK, Yang HS. thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl Phys Lett 2006;88:031901.
-
(2006)
Appl Phys Lett
, vol.88
, pp. 031901
-
-
Hong, K.S.1
Hong, T.K.2
Yang, H.S.3
-
49
-
-
30344457064
-
Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol
-
Kwak K, Kim C. Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Aust Rheo J 2005;172):35-40. (Pubitemid 43057318)
-
(2005)
Korea Australia Rheology Journal
, vol.17
, Issue.2
, pp. 35-40
-
-
Kwak, K.1
Kim, C.2
-
50
-
-
37749004290
-
Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory
-
Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV. thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory. Phys Rev 2007;76:061203.
-
(2007)
Phys Rev
, vol.76
, pp. 061203
-
-
Timofeeva, E.V.1
Gavrilov, A.N.2
McCloskey, J.M.3
Tolmachev, Y.V.4
-
51
-
-
33947152489
-
2 nanoparticles (nanofluids) flowing upward through a vertical pipe
-
DOI 10.1016/j.ijheatmasstransfer.2006.10.024, PII S0017931006005916
-
2 nanoparticles nanofluids) flowing upward through a vertical pipe. int J Heat Mass Transfer 2007;50:2272-81. (Pubitemid 46412319)
-
(2007)
International Journal of Heat and Mass Transfer
, vol.50
, Issue.11-12
, pp. 2272-2281
-
-
He, Y.1
Jin, Y.2
Chen, H.3
Ding, Y.4
Cang, D.5
Lu, H.6
-
53
-
-
33745311981
-
Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials
-
Gustafsson SE. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev Sci instrum 1991;62:797-804.
-
(1991)
Rev Sci instrum
, vol.62
, pp. 797-804
-
-
Gustafsson, S.E.1
-
54
-
-
29144520228
-
Short hot wire technique for measuring thermal conductivity and thermal diffusivity of various materials
-
DOI 10.1088/0957-0233/17/1/032, PII S0957023306985427
-
Xie H, Gu H, Fujii M, Zhang X. Short hot wire technique for measuring thermal diffusivity of various materials. Meas Sci Technol 2006;17:208-14. (Pubitemid 41811104)
-
(2006)
Measurement Science and Technology
, vol.17
, Issue.1
, pp. 208-214
-
-
Xie, H.1
Gu, H.2
Fujii, M.3
Zhang, X.4
-
56
-
-
0004482073
-
Thermal conductivity of electrically conducting liquids by the transient hot-wire method
-
Bleazard JG, Teja AS. thermal conductivity of electrically conducting liquids by the transient hot-wire method. J Chem Eng Data 1995;404):732-7.
-
(1995)
J Chem Eng Data
, vol.40
, Issue.4
, pp. 732-737
-
-
Bleazard, J.G.1
Teja, A.S.2
-
57
-
-
62749088950
-
Measurement and model on thermal conductivities of carbon nanotube
-
doi:10.1016/j.ijthermalsci.2008.11.012
-
JiangW, Ding G, Peng H. Measurement and model on thermal conductivities of carbon nanotube. Nanorefrigerants 2009, http://www.sciencedirect.com/, doi:10.1016/j.ijthermalsci.2008.11.012.
-
(2009)
Nanorefrigerants
-
-
JiangW Ding, G.1
Peng, H.2
-
59
-
-
0006128719
-
Temperature oscillation techniques for simultaneousmeasurement of thermal diffusivity and conductivity
-
Czarnetzki W, Roetzel W. Temperature oscillation techniques for simultaneousmeasurement of thermal diffusivity and conductivity. int J thermophys 1995;162):413-22.
-
(1995)
Int J thermophys
, vol.16
, Issue.2
, pp. 413-422
-
-
Czarnetzki, W.1
Roetzel, W.2
-
60
-
-
0042418742
-
Temperature dependence of thermal conductivity enhancement for nanofluids
-
DOI 10.1115/1.1571080
-
Das SK, Putra N, Tiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J Heat Transfer 2003;125: 567-74. (Pubitemid 37078524)
-
(2003)
Journal of Heat Transfer
, vol.125
, Issue.4
, pp. 567-574
-
-
Das, S.K.1
Putra, N.2
Thiesen, P.3
Roetzel, W.4
-
61
-
-
51849140510
-
Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3v method
-
Oh DW, Jain A, Eaton JK, Goodson KE, Lee JS. thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3v method. int J Heat Fluid Flow 2008;295):1456-61.
-
(2008)
Int J Heat Fluid Flow
, vol.29
, Issue.5
, pp. 1456-1461
-
-
Oh, D.W.1
Jain, A.2
Eaton, J.K.3
Goodson, K.E.4
Lee, J.S.5
-
62
-
-
0009905147
-
Measurement of thermal conduction by the thermal comparator
-
Clark WT, Powell RW. Measurement of thermal conduction by the thermal comparator. J Sci instrum 1962;39:545-51.
-
(1962)
J Sci instrum
, vol.39
, pp. 545-551
-
-
Clark, W.T.1
Powell, R.W.2
-
63
-
-
36849101971
-
Measurements of thermal conduction and surface finish by the thermal comparator
-
doi:10.1063/11708771
-
Sherif II, Mahmoud NS. Measurements of thermal conduction and surface finish by the thermal comparator. J Appl Phys 1966;37:2193-4. doi: 10.1063/ 1.1708771.
-
(1966)
J Appl Phys
, vol.37
, pp. 2193-2194
-
-
Sherif, I.I.1
Mahmoud, N.S.2
-
64
-
-
0018105772
-
Measurement of thermal conductivity of Green River oil shales by a thermal comparator technique
-
DOI 10.1016/0016-2361(78)90141-2
-
Nottenburg R, Rajeshwar K, Rosenvold R, DuBow J. Measurement of thermal conductivity of Green River oil shales by a thermal comparator technique. J Fuel 1978;57:789-95. (Pubitemid 9413577)
-
(1978)
Fuel
, vol.57
, Issue.12
, pp. 789-795
-
-
Nottenburg Richard1
Rajeshwar Krishnan2
Rosenvold Robert3
DuBow Joel4
-
65
-
-
33847798338
-
Thermal comparator measurements on dimethyl sulfite
-
Kreitman MM. thermal comparator measurements on dimethyl sulfite. J Chem Eng Data 1976;211):11-2.
-
(1976)
J Chem Eng Data
, vol.21
, Issue.1
, pp. 11-12
-
-
Kreitman, M.M.1
-
67
-
-
34547732411
-
Rheological behaviour of ethylene glycol based titania nanofluids
-
DOI 10.1016/j.cplett.2007.07.046, PII S0009261407009785
-
Chen H, Ding Y, He Y, Tan C. Rheological behaviour of ethylene glycol based titania nanofluids. Chem Phys Lett 2007;444:333-7. (Pubitemid 47238768)
-
(2007)
Chemical Physics Letters
, vol.444
, Issue.4-6
, pp. 333-337
-
-
Chen, H.1
Ding, Y.2
He, Y.3
Tan, C.4
-
69
-
-
0142167499
-
Thermal conductivity of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects
-
Patel HE, Das SK, Sundararajan T, Nair AS, George B, Pradeep T. thermal conductivity of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett 2003;83:2931-3.
-
(2003)
Appl Phys Lett
, vol.83
, pp. 2931-2933
-
-
Patel, H.E.1
Das, S.K.2
Sundararajan, T.3
Nair, A.S.4
George, B.5
Pradeep, T.6
-
70
-
-
8644220606
-
Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids)
-
Wen D, Ding Y. Effective thermal conductivity of aqueous suspensions of carbon nanotubes carbon nanotube nanofluids). J thermophys Heat Transfer 2004;18:481-5. (Pubitemid 39503968)
-
(2004)
Journal of Thermophysics and Heat Transfer
, vol.18
, Issue.4
, pp. 481-485
-
-
Wen, D.1
Ding, Y.2
-
71
-
-
32244446247
-
Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids)
-
DOI 10.1016/j.ijheatmasstransfer.2005.07.009, PII S0017931005004618
-
Ding Y, Alias H,Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes CNT nanofluids). int J Heat Mass Transfer 2006;49:240-50. (Pubitemid 43210296)
-
(2006)
International Journal of Heat and Mass Transfer
, vol.49
, Issue.1-2
, pp. 240-250
-
-
Ding, Y.1
Alias, H.2
Wen, D.3
Williams, R.A.4
|