메뉴 건너뛰기




Volumn 25, Issue 3, 2014, Pages 1124-1131

New Nusselt number correlations to predict the thermal conductivity of nanofluids

Author keywords

Monte Carlo; Nanofluids; Nusselt number; Thermal conductivity

Indexed keywords

ALUMINA; ALUMINUM OXIDE; COPPER OXIDES; HEAT FLUX; MONTE CARLO METHODS; NANOFLUIDICS; NANOPARTICLES; NUSSELT NUMBER; OXIDE MINERALS; THERMAL CONDUCTIVITY; TITANIUM DIOXIDE;

EID: 84901603729     PISSN: 09218831     EISSN: 15685527     Source Type: Journal    
DOI: 10.1016/j.apt.2014.02.020     Document Type: Article
Times cited : (39)

References (49)
  • 1
    • 0342936792 scopus 로고    scopus 로고
    • Development and applications of non-newtonian flows
    • D.A. Singiner, H.P. Wang (Eds.)
    • S.U.S. Choi, Development and Applications of Non-Newtonian Flows, D.A. Singiner, H.P. Wang (Eds.), ASME 66 (1995) 99-105.
    • ASME , vol.66 , Issue.1995 , pp. 99-105
    • Choi, S.U.S.1
  • 2
    • 33750694638 scopus 로고    scopus 로고
    • Heat transfer characteristics of nanofluids: A review
    • Q.X. Wang, and S.A. Mujumdar Heat transfer characteristics of nanofluids: a review Int. J. Thermal Sci. 46 1 2007 1 19
    • (2007) Int. J. Thermal Sci. , vol.46 , Issue.1 , pp. 1-19
    • Wang, Q.X.1    Mujumdar, S.A.2
  • 4
    • 0007644403 scopus 로고
    • 2 ultra-fine particles)
    • 2 ultra-fine particles) Netsu Bussei 4 1993 227 233
    • (1993) Netsu Bussei , vol.4 , pp. 227-233
    • Masuda, H.1
  • 5
    • 0032825295 scopus 로고    scopus 로고
    • Measuring thermal conductivity of fluids containing oxide nanoparticles
    • S. Lee et al. Measuring thermal conductivity of fluids containing oxide nanoparticles J. Heat Trans. 121 1999 280 289 (Pubitemid 29419226)
    • (1999) Journal of Heat Transfer , vol.121 , Issue.2 , pp. 280-289
    • Lee, S.1    Choi, S.U.-S.2    Li, S.3    Eastman, J.A.4
  • 6
    • 0037570726 scopus 로고    scopus 로고
    • A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles
    • B.X. Wang et al. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles Int. J. Heat Mass Trans 46 2003 2665 2672
    • (2003) Int. J. Heat Mass Trans , vol.46 , pp. 2665-2672
    • Wang, B.X.1
  • 7
    • 0042418742 scopus 로고    scopus 로고
    • Temperature dependence of thermal conductivity enhancement for nanofluids
    • DOI 10.1115/1.1571080
    • S.K. Das et al. Temperature dependence of thermal conductivity enhancement for nanofluids J. Heat Trans. 125 4 2003 567 574 (Pubitemid 37078524)
    • (2003) Journal of Heat Transfer , vol.125 , Issue.4 , pp. 567-574
    • Das, S.K.1    Putra, N.2    Thiesen, P.3    Roetzel, W.4
  • 8
    • 28344455695 scopus 로고    scopus 로고
    • 3 thermal conductivity enhancement
    • 3 thermal conductivity enhancement Appl. Phys. Lett. 87 2005 153107
    • (2005) Appl. Phys. Lett. , vol.87 , pp. 153107
    • Chan, H.C.1
  • 9
    • 84888197117 scopus 로고    scopus 로고
    • Effect of a magnetic field on natural convection in an inclined half-Annulus enclosure filled with Cu-water nanofluid using CVFEM
    • M. Sheikholeslami, M. Gorji-Bandpy, D.D. Ganji, and Soheil Soleimani Effect of a magnetic field on natural convection in an inclined half-Annulus enclosure filled with Cu-water nanofluid using CVFEM Adv Powder Technol 24 2013 980 991
    • (2013) Adv Powder Technol , vol.24 , pp. 980-991
    • Sheikholeslami, M.1    Gorji-Bandpy, M.2    Ganji, D.D.3    Soleimani, S.4
  • 10
    • 84863857380 scopus 로고    scopus 로고
    • Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid
    • M. Sheikholeslami, M. Gorji-Bandpay, and D.D. Ganji Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid Int. Commun. Heat Mass Trans. 39 2012 978 986
    • (2012) Int. Commun. Heat Mass Trans. , vol.39 , pp. 978-986
    • Sheikholeslami, M.1    Gorji-Bandpay, M.2    Ganji, D.D.3
  • 11
    • 84871771935 scopus 로고    scopus 로고
    • Heat transfer of Cu-water nanofluid flow between parallel plates
    • M. Sheikholeslami, and D.D. Ganji Heat transfer of Cu-water nanofluid flow between parallel plates Powder Technol. 235 2013 873 879
    • (2013) Powder Technol. , vol.235 , pp. 873-879
    • Sheikholeslami, M.1    Ganji, D.D.2
  • 13
    • 2942694254 scopus 로고    scopus 로고
    • Role of brownian motion in the enhanced thermal conductivity of nanofluid
    • S.P. Jang, and S.U.S. Choi Role of brownian motion in the enhanced thermal conductivity of nanofluid Appl. Phys. Lett. 84 24 2004 4316 4318
    • (2004) Appl. Phys. Lett. , vol.84 , Issue.24 , pp. 4316-4318
    • Jang, S.P.1    Choi, S.U.S.2
  • 14
    • 33749449267 scopus 로고    scopus 로고
    • A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles
    • DOI 10.1088/0022-3727/39/20/028, PII S0022372706270414, 028
    • J. Xu et al. A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles J. Phys. D. Appl. Phys. 39 2006 4486 4490 (Pubitemid 44508509)
    • (2006) Journal of Physics D: Applied Physics , vol.39 , Issue.20 , pp. 4486-4490
    • Xu, J.1    Yu, B.2    Zou, M.3    Xu, P.4
  • 15
    • 0037394035 scopus 로고    scopus 로고
    • Aggregation structure and thermal conductivity of nanofluids
    • DOI 10.1002/aic.690490420
    • Y. Xuan, Q. Li, and W. Hu Aggregation structure and thermal conductivity of nanofluids AIChE J. 49 2003 1038 1043 (Pubitemid 36504566)
    • (2003) AIChE Journal , vol.49 , Issue.4 , pp. 1038-1043
    • Xuan, Y.1    Li, Q.2    Hu, W.3
  • 16
    • 84892661067 scopus 로고    scopus 로고
    • Three dimensional heat and mass transfer in a rotating system using nanofluid
    • 10.1016/j.powtec.2013.12.042 PII:S0032 5910(13)00807-3
    • M. Sheikholeslami, and D.D. Ganji Three dimensional heat and mass transfer in a rotating system using nanofluid Powder Technol 2014 10.1016/j.powtec.2013.12.042 PII:S0032 5910(13)00807-3
    • (2014) Powder Technol
    • Sheikholeslami, M.1    Ganji, D.D.2
  • 17
    • 33750694638 scopus 로고    scopus 로고
    • Heat transfer characteristics of nanofluids: A review
    • Qi. Xiang et al. Heat transfer characteristics of nanofluids: a review Int. J. Thermal Sci. 46 2007 1 19
    • (2007) Int. J. Thermal Sci. , vol.46 , pp. 1-19
    • Xiang, Qi.1
  • 18
    • 18844430431 scopus 로고    scopus 로고
    • Model for heat conduction in nanofluids
    • D. Kumar et al. Model for heat conduction in nanofluids Phys. Rev. Lett. 93 14 2004 144301
    • (2004) Phys. Rev. Lett. , vol.93 , Issue.14 , pp. 144301
    • Kumar, D.1
  • 20
    • 84884594144 scopus 로고    scopus 로고
    • 3-water nanofluid flow and heat transfer in a semi-Annulus enclosure using LBM
    • 3-water nanofluid flow and heat transfer in a semi-Annulus enclosure using LBM Energy 60 2013 501 510
    • (2013) Energy , vol.60 , pp. 501-510
    • Sheikholeslami, M.1    Gorji-Bandpy, M.2    Ganji, D.D.3
  • 21
    • 84892878826 scopus 로고    scopus 로고
    • Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid
    • 10.1016/j.powtec. 2013.12.054
    • M. Sheikholeslami, M. Gorji-Bandpy, and D.D. Ganji Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid Powder Technol. 2014 10.1016/j.powtec. 2013.12.054
    • (2014) Powder Technol.
    • Sheikholeslami, M.1    Gorji-Bandpy, M.2    Ganji, D.D.3
  • 22
    • 48949107013 scopus 로고    scopus 로고
    • Thermal conductivity of nanofluids and size distribution of nanoparticles by Monte Carlo simulations
    • Y. Feng et al. Thermal conductivity of nanofluids and size distribution of nanoparticles by Monte Carlo simulations J. Nanoparticle Res. 10 2008 1319 1328
    • (2008) J. Nanoparticle Res. , vol.10 , pp. 1319-1328
    • Feng, Y.1
  • 23
    • 36849127996 scopus 로고
    • Heat and mass transfer from single spheres in Stokes flow
    • A. Acrivos, and T.D. Taylor Heat and mass transfer from single spheres in Stokes flow Phys. Fluids 5 1962 387 394
    • (1962) Phys. Fluids , vol.5 , pp. 387-394
    • Acrivos, A.1    Taylor, T.D.2
  • 24
    • 33748796363 scopus 로고    scopus 로고
    • Effect of blockage on drag and heat transfer from a single sphere and an in-line array of three spheres
    • DOI 10.1016/j.powtec.2006.07.007, PII S0032591006002683
    • A. Maheshwari Effect of blockage on drag and heat transfer from a single sphere and an in-line array of three spheres Powder Technol. 168 2006 74 83 (Pubitemid 44414906)
    • (2006) Powder Technology , vol.168 , Issue.2 , pp. 74-83
    • Maheshwari, A.1    Chhabra, R.P.2    Biswas, G.3
  • 25
    • 0015316493 scopus 로고
    • Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and flow in packed beds and tube bundles
    • S. Whitaker Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and flow in packed beds and tube bundles AIChE J. 18 1972 361 371
    • (1972) AIChE J. , vol.18 , pp. 361-371
    • Whitaker, S.1
  • 26
    • 0343192359 scopus 로고    scopus 로고
    • Conceptions for heat transfer correlation of nanofluids
    • DOI 10.1016/S0017-9310(99)00369-5, PII S0017931099003695
    • Y. Xuana, and W. Roetzel Conceptions for heat transfer correlation of nanofluids Int. J. Heat Mass Trans. 43 2000 3701 3707 (Pubitemid 30605120)
    • (2000) International Journal of Heat and Mass Transfer , vol.43 , Issue.19 , pp. 3701-3707
    • Xuan, Y.1    Roetzel, W.2
  • 27
    • 0004108629 scopus 로고
    • second ed. McGraw-Hill New York, USA
    • F.M. White Viscous fluid flow second ed. 1991 McGraw-Hill New York, USA
    • (1991) Viscous Fluid Flow
    • White, F.M.1
  • 28
    • 0000351691 scopus 로고
    • Equations for heat and mass transfer in turbulent pipe and channel flow
    • V. Gnielinski Equations for heat and mass transfer in turbulent pipe and channel flow Int. Chem. Eng. 16 1976 359 368
    • (1976) Int. Chem. Eng. , vol.16 , pp. 359-368
    • Gnielinski, V.1
  • 29
    • 18144386609 scopus 로고    scopus 로고
    • Thermal conductivity of nanoscale colloidal solutions (nanofluids)
    • R.S. Prasher et al. Thermal conductivity of nanoscale colloidal solutions (nanofluids) Phys. Rev. Lett. 94 2005 025901
    • (2005) Phys. Rev. Lett. , vol.94 , pp. 025901
    • Prasher, R.S.1
  • 30
    • 77955515569 scopus 로고    scopus 로고
    • Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids
    • Ravikanth S. Vajjha, Debendra K. Das, and Devdatta P. Kulkarni Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids Int. J. Heat Mass Trans. 53 2010 4607 4618
    • (2010) Int. J. Heat Mass Trans. , vol.53 , pp. 4607-4618
    • Vajjha, R.S.1    Das, D.K.2    Kulkarni, D.P.3
  • 31
    • 9644264111 scopus 로고    scopus 로고
    • Monte Carlo simulation of the effective thermal conductivity in two-phase material
    • I.V. Belova, and G.E. Murch Monte Carlo simulation of the effective thermal conductivity in two-phase material J. Mater. Process. Technol. 153-154 2004 741 745
    • (2004) J. Mater. Process. Technol. , vol.153-154 , pp. 741-745
    • Belova, I.V.1    Murch, G.E.2
  • 32
    • 62149120368 scopus 로고    scopus 로고
    • Empirical correlations to predict thermo physical and heat transfer characteristics of nanofluids
    • V. Velagapudi et al. Empirical correlations to predict thermo physical and heat transfer characteristics of nanofluids Thermal Sci. 12 2 2008 27 37
    • (2008) Thermal Sci. , vol.12 , Issue.2 , pp. 27-37
    • Velagapudi, V.1
  • 33
    • 0037429012 scopus 로고    scopus 로고
    • Model for effective thermal conductivity of nanofluids
    • Z. Xu Model for effective thermal conductivity of nanofluids Phys. Lett. A 307 2003 313 317
    • (2003) Phys. Lett. A , vol.307 , pp. 313-317
    • Xu, Z.1
  • 34
    • 58149246951 scopus 로고
    • Calculation of various physical constants of heterogenous substances, II dielectricity constants and conductivity of non regular multicrystal systems (in German)
    • D.A.G. Bruggeman Calculation of various physical constants of heterogenous substances, II dielectricity constants and conductivity of non regular multicrystal systems (in German) Annalen der Physik, Leip zig, Germany 430 1935 285 313
    • (1935) Annalen der Physik, Leip Zig, Germany , vol.430 , pp. 285-313
    • Bruggeman, D.A.G.1
  • 35
    • 0242582398 scopus 로고
    • Thermal conductivity of heterogeneous two component systems
    • R.L. Hamilton, and O.K. Crosser Thermal conductivity of heterogeneous two component systems Ind. Eng. Chem. Fundam. 1 3 1962 187 191
    • (1962) Ind. Eng. Chem. Fundam. , vol.1 , Issue.3 , pp. 187-191
    • Hamilton, R.L.1    Crosser, O.K.2
  • 36
    • 33749063542 scopus 로고
    • Effective thermal conductivity of dispersed materials (in German)
    • E. Yamada, and T. Ota Effective thermal conductivity of dispersed materials (in German) Waorme-und Stoffubertragung 13 1980 27 37
    • (1980) Waorme-und Stoffubertragung , vol.13 , pp. 27-37
    • Yamada, E.1    Ota, T.2
  • 37
    • 84892658729 scopus 로고    scopus 로고
    • Heat flux boundary condition for nanofluid filled enclosure in presence of magnetic field
    • M. Sheikholeslami, M. Gorji-Bandpy, D.D. Ganji, and Soheil Soleimani Heat flux boundary condition for nanofluid filled enclosure in presence of magnetic field J. Mol. Liq. 193 2014 174 184
    • (2014) J. Mol. Liq. , vol.193 , pp. 174-184
    • Sheikholeslami, M.1    Gorji-Bandpy, M.2    Ganji, D.D.3    Soleimani, S.4
  • 38
    • 33745815300 scopus 로고    scopus 로고
    • Brownian motion based convective-conductive model for the effective thermal conductivity of nanofluids
    • R.S. Prasher et al. Brownian motion based convective-conductive model for the effective thermal conductivity of nanofluids J. Heat Trans. 128 2006 588 595
    • (2006) J. Heat Trans. , vol.128 , pp. 588-595
    • Prasher, R.S.1
  • 39
    • 2942694254 scopus 로고    scopus 로고
    • Role of Brownian motion in the enhanced thermal conductivity of nanofluids
    • S.P. Jang, and S.U.S. Choi Role of Brownian motion in the enhanced thermal conductivity of nanofluids Appl. Phys. Lett. 84 2004 4316 4318
    • (2004) Appl. Phys. Lett. , vol.84 , pp. 4316-4318
    • Jang, S.P.1    Choi, S.U.S.2
  • 40
    • 0023452103 scopus 로고
    • Diffusion in disordered media
    • S. Havlin, and D. Ben-Avraham Diffusion in disordered media Adv. Phys. 36 6 1987 695 798
    • (1987) Adv. Phys. , vol.36 , Issue.6 , pp. 695-798
    • Havlin, S.1    Ben-Avraham, D.2
  • 41
    • 0001002829 scopus 로고    scopus 로고
    • Observation of molecular layering in thin liquid films using X-ray reflectivity
    • C.J. Yu et al. Observation of molecular layering in thin liquid films using X-ray reflectivity Phys. Rev. Lett. 82 1999 2326
    • (1999) Phys. Rev. Lett. , vol.82 , pp. 2326
    • Yu, C.J.1
  • 42
    • 31144453694 scopus 로고    scopus 로고
    • Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles
    • K.S. Hong et al. Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles Appl. Phys. Lett. 88 2006 031901
    • (2006) Appl. Phys. Lett. , vol.88 , pp. 031901
    • Hong, K.S.1
  • 43
    • 78649922609 scopus 로고    scopus 로고
    • Temperature-dependent aggregation and diffusion in nanofluids
    • P.E. Gharagozloo, and E.K. Goodson Temperature-dependent aggregation and diffusion in nanofluids Int. J. Heat Mass Trans. 54 2011 797 806
    • (2011) Int. J. Heat Mass Trans. , vol.54 , pp. 797-806
    • Gharagozloo, P.E.1    Goodson, E.K.2
  • 44
    • 0036537378 scopus 로고    scopus 로고
    • Thermal conductivity enhancement of suspensions containing nanosized alumina particles
    • H. Xie et al. Thermal conductivity enhancement of suspensions containing nanosized alumina particles J. Appl. Phys. 91 7 2002 4568 4572
    • (2002) J. Appl. Phys. , vol.91 , Issue.7 , pp. 4568-4572
    • Xie, H.1
  • 46
    • 34447524065 scopus 로고    scopus 로고
    • Thermal conductivity of metal-oxide nanofluids: Particle size dependence and effect of laser irradiation
    • H.S. Kim et al. Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation J. Heat Trans. 129 4 2007 298 307
    • (2007) J. Heat Trans. , vol.129 , Issue.4 , pp. 298-307
    • Kim, H.S.1
  • 47
    • 8644220606 scopus 로고    scopus 로고
    • Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids)
    • D. Wen, and Y. Ding Effective thermal conductivity of aqueous suspensions f carbon nanotubes (carbon nanotube nanofluids) J. Thermophys. Heat Trans. 18 4 2004 481 485 (Pubitemid 39503968)
    • (2004) Journal of Thermophysics and Heat Transfer , vol.18 , Issue.4 , pp. 481-485
    • Wen, D.1    Ding, Y.2
  • 48
    • 33947722121 scopus 로고    scopus 로고
    • Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles
    • DOI 10.1016/j.expthermflusci.2006.06.009, PII S0894177706000951
    • X. Zhang et al. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles Exp. Thermal Fluid Sci. 31 2007 593 599 (Pubitemid 46507722)
    • (2007) Experimental Thermal and Fluid Science , vol.31 , Issue.6 , pp. 593-599
    • Zhang, X.1    Gu, H.2    Fujii, M.3
  • 49
    • 0242499391 scopus 로고    scopus 로고
    • Interfacial heat flow in carbon nanotube suspensions
    • NOVOMBER
    • T.H. Scott, and G.C. David et al. Interfacial heat flow in carbon nanotube suspensions Nat. Mater. 2 Novomber 2003
    • (2003) Nat. Mater. , vol.2
    • Scott, T.H.1    David, G.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.