메뉴 건너뛰기




Volumn 233, Issue , 2013, Pages 234-244

An investigation into modelling thermal conductivity for alumina-water nanofluids

Author keywords

Brinkman number; Dimensionless analysis; Nanofluids; Theoretical models; Thermal conductivity

Indexed keywords

BRINKMAN NUMBER; DEVELOPED MODEL; DIMENSIONLESS ANALYSIS; EMPIRICAL MODEL; NANOFLUIDS; REYNOLDS; TEST CONDITION; THEORETICAL MODELS;

EID: 84867761092     PISSN: 00325910     EISSN: 1873328X     Source Type: Journal    
DOI: 10.1016/j.powtec.2012.08.003     Document Type: Article
Times cited : (49)

References (48)
  • 4
    • 30344457064 scopus 로고    scopus 로고
    • Viscosity and Thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol
    • Kwak K., Kim C. Viscosity and Thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Australia Rheology Journal 2005, 17(2):35-40.
    • (2005) Korea-Australia Rheology Journal , vol.17 , Issue.2 , pp. 35-40
    • Kwak, K.1    Kim, C.2
  • 7
    • 0036537378 scopus 로고    scopus 로고
    • Thermal conductivity enhancement of suspensions containing nanosized alumina particles
    • Xie H.Q., Wang J.C., Xi T.G., Liu Y., Ai F., Wu Q.R. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. Applied Physics 2002, 91(7):4568-4572.
    • (2002) Applied Physics , vol.91 , Issue.7 , pp. 4568-4572
    • Xie, H.Q.1    Wang, J.C.2    Xi, T.G.3    Liu, Y.4    Ai, F.5    Wu, Q.R.6
  • 9
    • 79959768136 scopus 로고    scopus 로고
    • A critical synthesis of thermophysical characteristics of nanofluids
    • Khanafer K., Vafai K. A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Technology 2011, 54:4410-4428.
    • (2011) International Journal of Heat and Technology , vol.54 , pp. 4410-4428
    • Khanafer, K.1    Vafai, K.2
  • 10
    • 2942694254 scopus 로고    scopus 로고
    • Role of Brownian motion in the enhanced thermal conductivity of nanofluids
    • Jang S.P., Choi S.U.S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied Physics Letters 2004, 84(21):4316-4318.
    • (2004) Applied Physics Letters , vol.84 , Issue.21 , pp. 4316-4318
    • Jang, S.P.1    Choi, S.U.S.2
  • 11
    • 77955470128 scopus 로고    scopus 로고
    • The effect of alumina/water nanofluid particle size on thermal conductivity
    • Teng T.P., Hung Y.H., Teng T.C., Moa H.E., Hsu H.G. The effect of alumina/water nanofluid particle size on thermal conductivity. Applied Thermal Engineering 2010, 30:2213-2218.
    • (2010) Applied Thermal Engineering , vol.30 , pp. 2213-2218
    • Teng, T.P.1    Hung, Y.H.2    Teng, T.C.3    Moa, H.E.4    Hsu, H.G.5
  • 15
    • 33646739701 scopus 로고    scopus 로고
    • Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)
    • Li C.H., Peterson G.P. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). Applied Physics 2006, 99:08314-1-08314-8.
    • (2006) Applied Physics , vol.99 , pp. 083141-083148
    • Li, C.H.1    Peterson, G.P.2
  • 17
    • 80052268944 scopus 로고    scopus 로고
    • 3 nanofluids prepared through ultrasonic vibration
    • 3 nanofluids prepared through ultrasonic vibration. Applied Energy 2011, 88:4527-4533.
    • (2011) Applied Energy , vol.88 , pp. 4527-4533
    • Lin, C.Y.1    Wang, J.C.2    Chen, T.C.3
  • 18
    • 0042418742 scopus 로고    scopus 로고
    • Temperature dependence of thermal conductivity enhancement for nanofluids
    • Das S.K., Putra N., Thiesen P., Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. Journal of Heat Transfer 2003, 125:567-574.
    • (2003) Journal of Heat Transfer , vol.125 , pp. 567-574
    • Das, S.K.1    Putra, N.2    Thiesen, P.3    Roetzel, W.4
  • 20
    • 0001345525 scopus 로고
    • Conduction Through a Random Suspension of Spheres
    • Jeffrey D.J. Conduction Through a Random Suspension of Spheres. Royal Society of London, Series A 1973, 335(1602):355-367.
    • (1973) Royal Society of London, Series A , vol.335 , Issue.1602 , pp. 355-367
    • Jeffrey, D.J.1
  • 21
    • 0038082987 scopus 로고    scopus 로고
    • The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model
    • Yu W., Choi S.U.S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. Journal of Nanoparticle Research 2003, 5:167-171.
    • (2003) Journal of Nanoparticle Research , vol.5 , pp. 167-171
    • Yu, W.1    Choi, S.U.S.2
  • 23
    • 18544377641 scopus 로고    scopus 로고
    • Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture
    • Xie H., Fujii M., Zhang X. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. International Journal of Heat and Technology 2005, 48:2926-2932.
    • (2005) International Journal of Heat and Technology , vol.48 , pp. 2926-2932
    • Xie, H.1    Fujii, M.2    Zhang, X.3
  • 24
    • 84954824794 scopus 로고
    • Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen
    • Bruggeman D.A.G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Annalen der Physik 1935, 416(7):636-664.
    • (1935) Annalen der Physik , vol.416 , Issue.7 , pp. 636-664
    • Bruggeman, D.A.G.1
  • 25
    • 0031143265 scopus 로고    scopus 로고
    • Effective thermal conductivity of particulate composites with interfacial thermal resistance
    • Nan C., Birringer R., Clarke D.R., Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. Journal of Applied Physics 1997, 81:6692-6699.
    • (1997) Journal of Applied Physics , vol.81 , pp. 6692-6699
    • Nan, C.1    Birringer, R.2    Clarke, D.R.3    Gleiter, H.4
  • 29
    • 77649233259 scopus 로고    scopus 로고
    • Enhanced thermal conductivity of nanofluids: a state-of-the-art review
    • Ozerinc S., Kakac S., Guvenc A.Y. Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluidics and Nanofluidics 2010, 8:145-170.
    • (2010) Microfluidics and Nanofluidics , vol.8 , pp. 145-170
    • Ozerinc, S.1    Kakac, S.2    Guvenc, A.Y.3
  • 30
    • 71949122689 scopus 로고    scopus 로고
    • Experimental investigation of heat conduction mechanisms in nanofluids. Clue on clustering
    • Gao J.W., Zheng R.T., Ohtani H., Zhu D.S., Chen G. Experimental investigation of heat conduction mechanisms in nanofluids. Clue on clustering. Nanoletter 2009, 9:4128-4132.
    • (2009) Nanoletter , vol.9 , pp. 4128-4132
    • Gao, J.W.1    Zheng, R.T.2    Ohtani, H.3    Zhu, D.S.4    Chen, G.5
  • 31
    • 33746933431 scopus 로고    scopus 로고
    • Nanofluid
    • Prasher R., Phelen P.E., Bhattacharya P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions. Nanoletter 2006, 6:1529-1534.
    • (2006) Nanoletter , vol.6 , pp. 1529-1534
    • Prasher, R.1    Phelen, P.E.2    Bhattacharya, P.3
  • 32
    • 79960991869 scopus 로고    scopus 로고
    • Experimental measurement of thermophysical properties of oxide-water nano-fluids down to ice-point
    • Longo G.A., Zilio C. Experimental measurement of thermophysical properties of oxide-water nano-fluids down to ice-point. Experimental Thermal and Fluid Science 2011, 35:1313-1324.
    • (2011) Experimental Thermal and Fluid Science , vol.35 , pp. 1313-1324
    • Longo, G.A.1    Zilio, C.2
  • 33
    • 84858112800 scopus 로고    scopus 로고
    • Application of Artificial Neural Network (ANN) for the prediction of thermal conductivity of oxide-water nanofluids
    • Longo G.A., Zilio C., Ceseracciu E., Reggiani M. Application of Artificial Neural Network (ANN) for the prediction of thermal conductivity of oxide-water nanofluids. Nano Energy 2012, 1:290-296.
    • (2012) Nano Energy , vol.1 , pp. 290-296
    • Longo, G.A.1    Zilio, C.2    Ceseracciu, E.3    Reggiani, M.4
  • 35
    • 33847322946 scopus 로고    scopus 로고
    • Study of thermal conductivity of nanofluid for the application of heat transfer fluids
    • Yoo D.H., Hong K.S., Yang H.S. Study of thermal conductivity of nanofluid for the application of heat transfer fluids. Thermochimic Acta 2007, 455:66-69.
    • (2007) Thermochimic Acta , vol.455 , pp. 66-69
    • Yoo, D.H.1    Hong, K.S.2    Yang, H.S.3
  • 36
    • 33947722121 scopus 로고    scopus 로고
    • Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles
    • Zhang X., Gu H., Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Experimental Thermal and Fluid Science 2007, 31:593-599.
    • (2007) Experimental Thermal and Fluid Science , vol.31 , pp. 593-599
    • Zhang, X.1    Gu, H.2    Fujii, M.3
  • 39
    • 59049102917 scopus 로고    scopus 로고
    • Laminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluids
    • Rea U., McKrell M., Hu L.W., Buongiorno J. Laminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluids. International Journal of Heat and Technology 2009, 52:2042-2048.
    • (2009) International Journal of Heat and Technology , vol.52 , pp. 2042-2048
    • Rea, U.1    McKrell, M.2    Hu, L.W.3    Buongiorno, J.4
  • 42
    • 0242582398 scopus 로고
    • Thermal conductivity of heterogeneous two-component systems
    • Hamilton R.L., Crosser O.K. Thermal conductivity of heterogeneous two-component systems. I & EC Fundamentals 1962, 1:182-191.
    • (1962) I & EC Fundamentals , vol.1 , pp. 182-191
    • Hamilton, R.L.1    Crosser, O.K.2
  • 43
    • 33845306496 scopus 로고    scopus 로고
    • Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels
    • Lee J., Mudawar I. Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels. International Journal of Heat and Mass Transfer 2007, 50:452-463.
    • (2007) International Journal of Heat and Mass Transfer , vol.50 , pp. 452-463
    • Lee, J.1    Mudawar, I.2
  • 44
    • 58149388046 scopus 로고    scopus 로고
    • Effect of reduced specific heats of nanofluids on single phase, laminar internal forced convection
    • Bergman T.L. Effect of reduced specific heats of nanofluids on single phase, laminar internal forced convection. International Journal of Heat and Mass Transfer 2009, 1240-1244.
    • (2009) International Journal of Heat and Mass Transfer , pp. 1240-1244
    • Bergman, T.L.1
  • 47
    • 0041805569 scopus 로고    scopus 로고
    • Convective heat transfer and flow characteristics of Cu-water nanofluid
    • Qiang L., Yimin X. Convective heat transfer and flow characteristics of Cu-water nanofluid. Science in China (Series E) 2002, 45:408-416.
    • (2002) Science in China (Series E) , vol.45 , pp. 408-416
    • Qiang, L.1    Yimin, X.2
  • 48
    • 85025215678 scopus 로고    scopus 로고
    • Nanofluid properties and their effects on convective heat transfer in an electronics cooling application
    • Townsend J., Christianson R.J. Nanofluid properties and their effects on convective heat transfer in an electronics cooling application. Journal of Thermal Science and Engineering Applications 2009, 1:031006-1-031006-9.
    • (2009) Journal of Thermal Science and Engineering Applications , vol.1 , pp. 0310061-0310069
    • Townsend, J.1    Christianson, R.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.