메뉴 건너뛰기




Volumn 5, Issue , 2015, Pages

Application of Hybrid Fillers for Improving the Through-Plane Heat Transport in Graphite Nanoplatelet-Based Thermal Interface Layers

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84939458060     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep13108     Document Type: Article
Times cited : (33)

References (29)
  • 2
    • 33947286619 scopus 로고    scopus 로고
    • Thermal interface materials: Historical perspective, status, and future directions
    • Prasher, R. Thermal interface materials: Historical perspective, status, and future directions. Proc. IEEE 94, 1571-1586 (2006).
    • (2006) Proc IEEE , vol.94 , pp. 1571-1586
    • Prasher, R.1
  • 3
    • 84901193264 scopus 로고    scopus 로고
    • Emerging challenges and materials for thermal management of electronics
    • Moore, A. L. & Shi, L. Emerging challenges and materials for thermal management of electronics. Mater. Today 17, 163 (2014).
    • (2014) Mater. Today , vol.17 , pp. 163
    • Moore, A.L.1    Shi, L.2
  • 4
    • 0034436957 scopus 로고    scopus 로고
    • Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments
    • Xu, Y. S. & Chung, D. D. L. Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Compos. Interfaces 7, 243-256 (2000).
    • (2000) Compos. Interfaces , vol.7 , pp. 243-256
    • Xu, Y.S.1    Chung, D.D.L.2
  • 5
    • 0037439322 scopus 로고    scopus 로고
    • Nanoscale thermal transport
    • Cahill, D. G. et al. Nanoscale thermal transport. J. Appl. Phys. 93, 793-818 (2003).
    • (2003) J. Appl. Phys , vol.93 , pp. 793-818
    • Cahill, D.G.1
  • 7
    • 34250350449 scopus 로고    scopus 로고
    • Graphite nanoplatelet-epoxy composite thermal interface materials
    • Yu, A., Ramesh, P., Itkis, M. E., Bekyarova, E. & Haddon, R. C. Graphite nanoplatelet-epoxy composite thermal interface materials. J. Phys. Chem. C. 111, 7565-7569 (2007).
    • (2007) J. Phys. Chem C , vol.111 , pp. 7565-7569
    • Yu, A.1    Ramesh, P.2    Itkis, M.E.3    Bekyarova, E.4    Haddon, R.C.5
  • 8
    • 34447567130 scopus 로고    scopus 로고
    • Use of exfoliated graphite filler to enhance polymer physical properties
    • Debelak, B. & Lafdi, K. Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 45, 1727-1734 (2007).
    • (2007) Carbon , vol.45 , pp. 1727-1734
    • Debelak, B.1    Lafdi, K.2
  • 9
    • 41549104054 scopus 로고    scopus 로고
    • Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites
    • Ganguli, S., Roy, A. K. & Anderson, D. P. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 46, 806-817 (2008).
    • (2008) Carbon , vol.46 , pp. 806-817
    • Ganguli, S.1    Roy, A.K.2    Anderson, D.P.3
  • 10
    • 58049142576 scopus 로고    scopus 로고
    • Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites
    • Yu, A. et al. Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites. Adv. Mater. 20, 4740-4744 (2008).
    • (2008) Adv. Mater , vol.20 , pp. 4740-4744
    • Yu, A.1
  • 11
    • 66249114999 scopus 로고    scopus 로고
    • Carbon nanosheets for polymeric nanocomposites with high thermal conductivity
    • Veca, L. M. et al. Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv. Mater. 21, 2088-2092 (2009).
    • (2009) Adv. Mater , vol.21 , pp. 2088-2092
    • Veca, L.M.1
  • 12
    • 77956928046 scopus 로고    scopus 로고
    • Dependence of the thermal conductivity of two-dimensional graphite nanoplatelet-based composites on the nanoparticle size distribution
    • Sun, X., Ramesh, P., Itkis, M. E., Bekyarova, E. & Haddon, R. C. Dependence of the thermal conductivity of two-dimensional graphite nanoplatelet-based composites on the nanoparticle size distribution. J. Phys.: Condens. Matter. 22, 334216 (2010).
    • (2010) J. Phys.: Condens. Matter , vol.22 , pp. 334216
    • Sun, X.1    Ramesh, P.2    Itkis, M.E.3    Bekyarova, E.4    Haddon, R.C.5
  • 13
    • 79961022523 scopus 로고    scopus 로고
    • Characterization of graphite nanoplatelets and the physical properties of graphite nanoplatelet/silicone composites for thermal interface applications
    • Raza, M. A., Westwood, A., Brown, A., Hondow, N. & Stirling, C. Characterization of graphite nanoplatelets and the physical properties of graphite nanoplatelet/silicone composites for thermal interface applications. Carbon 49, 4269-4279 (2011).
    • (2011) Carbon , vol.49 , pp. 4269-4279
    • Raza, M.A.1    Westwood, A.2    Brown, A.3    Hondow, N.4    Stirling, C.5
  • 14
    • 80051917397 scopus 로고    scopus 로고
    • Thermal transport in graphene-based nanocomposites
    • Hu, L., Desai, T. & Keblinski, P. Thermal transport in graphene-based nanocomposites. J. Appl. Phys. 110, 033517 (2011).
    • (2011) J. Appl. Phys , vol.110 , pp. 033517
    • Hu, L.1    Desai, T.2    Keblinski, P.3
  • 15
    • 84903473078 scopus 로고    scopus 로고
    • 3D packaging materials based on graphite nanoplatelet and aluminum nitride nanocomposites
    • San Diego, CA, USA. New York, USA: ASME2013, November 15-21
    • Lingamneni, S., Marconnet, A. M. & Goodson, K. E. 3D packaging materials based on graphite nanoplatelet and aluminum nitride nanocomposites. ASME 2013 International Mechanical Engineering Congress and Exposition, San Diego, CA, USA. New York, USA: ASME. (doi: 10.1115/IMECE2013-66419) (2013, November 15-21).
    • ASME 2013 International Mechanical Engineering Congress and Exposition
    • Lingamneni, S.1    Marconnet, A.M.2    Goodson, K.E.3
  • 16
    • 84877761184 scopus 로고    scopus 로고
    • Anisotropic thermal and electrical properties of thin thermal interface layers of graphite nanoplatelet-based composites
    • Tian, X., Itkis, M. E., Bekyarova, E. & Haddon, R. C. Anisotropic thermal and electrical properties of thin thermal interface layers of graphite nanoplatelet-based composites. Sci. Rep. 3, 1710 (2013).
    • (2013) Sci. Rep , vol.3 , pp. 1710
    • Tian, X.1    Itkis, M.E.2    Bekyarova, E.3    Haddon, R.C.4
  • 17
    • 78650246689 scopus 로고    scopus 로고
    • Thermal conductivity of exfoliated graphite nanoplatelet paper
    • Xiang, J. L. & Drzal, L. T. Thermal conductivity of exfoliated graphite nanoplatelet paper. Carbon 49, 773-778 (2011).
    • (2011) Carbon , vol.49 , pp. 773-778
    • Xiang, J.L.1    Drzal, L.T.2
  • 18
    • 84878304500 scopus 로고    scopus 로고
    • Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: Effects of filler particle size, aggregation, orientation, and polymer chain rigidity
    • Tanimoto, M., Yamagata, T., Miyata, K. & Ando, S. Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: Effects of filler particle size, aggregation, orientation, and polymer chain rigidity. ACS Appl. Mater. Interfaces 5, 4374-4382 (2013).
    • (2013) ACS Appl. Mater. Interfaces , vol.5 , pp. 4374-4382
    • Tanimoto, M.1    Yamagata, T.2    Miyata, K.3    Ando, S.4
  • 19
    • 34247106303 scopus 로고    scopus 로고
    • Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials
    • Tong, T. et al. Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials. IEEE Trans. Compon. Packag. Technol. 30, 92-100 (2007).
    • (2007) IEEE Trans. Compon. Packag. Technol , vol.30 , pp. 92-100
    • Tong, T.1
  • 20
    • 84906948492 scopus 로고    scopus 로고
    • Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking
    • Uetani, K. et al. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking. Adv. Mater. 26, 5857-5862 (2014).
    • (2014) Adv. Mater , vol.26 , pp. 5857-5862
    • Uetani, K.1
  • 21
    • 0035546301 scopus 로고    scopus 로고
    • Thermally conducting aluminum nitride polymer-matrix composites
    • Xu, Y. S., Chung, D. D. L. & Mroz, C. Thermally conducting aluminum nitride polymer-matrix composites. Composites Part A 32, 1749-1757 (2001).
    • (2001) Composites Part A , vol.32 , pp. 1749-1757
    • Xu, Y.S.1    Chung, D.D.L.2    Mroz, C.3
  • 23
    • 36348941682 scopus 로고    scopus 로고
    • Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-modal particle size mixing
    • Yung, K. C. & Liem, H. Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-modal particle size mixing. J. Appl. Poly. Sci. 106, 3587-3591 (2007).
    • (2007) J. Appl. Poly. Sci , vol.106 , pp. 3587-3591
    • Yung, K.C.1    Liem, H.2
  • 24
    • 0141953082 scopus 로고    scopus 로고
    • Dependence of thermal conductivity and mechanical rigidity of particle-laden polymeric thermal interface material on particle volume fraction
    • Prasher, R. S., Koning, P., Shipley, J. & Devpura, A. Dependence of thermal conductivity and mechanical rigidity of particle-laden polymeric thermal interface material on particle volume fraction. J. Electron. Packaging 125, 386-391 (2003).
    • (2003) J. Electron. Packaging , vol.125 , pp. 386-391
    • Prasher, R.S.1    Koning, P.2    Shipley, J.3    Devpura, A.4
  • 25
    • 55949105201 scopus 로고    scopus 로고
    • High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets
    • Kim, S. & Drzal, L. T. High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol. Energy Mater. Sol. Cells 93, 136-142 (2009).
    • (2009) Sol. Energy Mater. Sol. Cells , vol.93 , pp. 136-142
    • Kim, S.1    Drzal, L.T.2
  • 26
    • 28344433408 scopus 로고    scopus 로고
    • On the lack of thermal percolation in carbon nanotube composites
    • Shenogina, N., Shenogin, S., Xue, L. & Keblinski, P. On the lack of thermal percolation in carbon nanotube composites. Appl. Phys. Lett. 87, 133106 (2005).
    • (2005) Appl. Phys. Lett , vol.87 , pp. 133106
    • Shenogina, N.1    Shenogin, S.2    Xue, L.3    Keblinski, P.4
  • 27
    • 17744375578 scopus 로고    scopus 로고
    • Thermal characterization of Al2O3 and ZnO reinforced silicon rubber as thermal pads for heat dissipation purposes
    • Sim, L. C., Ramanan, S. R., Ismail, H., Seetharamu, K. N. & Goh, T. J. Thermal characterization of Al2O3 and ZnO reinforced silicon rubber as thermal pads for heat dissipation purposes. Thermochimica Acta 430, 155-165 (2005).
    • (2005) Thermochimica Acta , vol.430 , pp. 155-165
    • Sim, L.C.1    Ramanan, S.R.2    Ismail, H.3    Seetharamu, K.N.4    Goh, T.J.5
  • 28
    • 34249912916 scopus 로고    scopus 로고
    • Electrically nonconductive thermal pastes with carbon as the thermally conductive component
    • Lin, C. G., Howe, T. A. & Chung, D. D. L. Electrically nonconductive thermal pastes with carbon as the thermally conductive component. J. Electron. Mater. 36, 659-668 (2007).
    • (2007) J. Electron. Mater , vol.36 , pp. 659-668
    • Lin, C.G.1    Howe, T.A.2    Chung, D.D.L.3
  • 29
    • 0346024327 scopus 로고    scopus 로고
    • Thermal resistance of particle laden polymeric thermal interface materials
    • Prasher, R. S., Shipley, J., Prstic, S., Koning, P. & Wang, J. L. Thermal resistance of particle laden polymeric thermal interface materials. ASME J. Heat Transfer 125, 1170-1177 (2003).
    • (2003) ASME J. Heat Transfer , vol.125 , pp. 1170-1177
    • Prasher, R.S.1    Shipley, J.2    Prstic, S.3    Koning, P.4    Wang, J.L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.