메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 173-182

On optimizing machine learning workloads via kernel fusion

Author keywords

Dense; Fused kernel; GPU; Machine learning; Sparse

Indexed keywords

ALGEBRA; ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS; LIBRARIES; MATRIX ALGEBRA; PARALLEL ARCHITECTURES; PARALLEL PROGRAMMING; PROGRAM PROCESSORS;

EID: 84939166673     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2688500.2688521     Document Type: Conference Paper
Times cited : (46)

References (35)
  • 2
    • 84903779279 scopus 로고    scopus 로고
    • Searching for exotic particles in high-energy physics with deep learning
    • P. Baldi, P. Sadowski, and D. Whiteson. Searching for Exotic Particles in High-Energy Physics with Deep Learning. Nature communications, 5, 2014.
    • (2014) Nature Communications , vol.5
    • Baldi, P.1    Sadowski, P.2    Whiteson, D.3
  • 7
    • 84939173410 scopus 로고    scopus 로고
    • BIDMach: Large-scale learning with zero memory allocation
    • J. Canny and H. Zhao. BIDMach: Large-Scale Learning with Zero Memory Allocation. In BigLearning, NIPS Workshop, 2013.
    • (2013) BigLearning, NIPS Workshop
    • Canny, J.1    Zhao, H.2
  • 9
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • O. Chapelle. Training a Support Vector Machine in the Primal. Neural Computation, 19(5):1155-1178, 2007.
    • (2007) Neural Computation , vol.19 , Issue.5 , pp. 1155-1178
    • Chapelle, O.1
  • 16
    • 62749178093 scopus 로고    scopus 로고
    • A parallel implementation of K-means clustering on GPUS
    • R. Farivar, D. Rebolledo, E. Chan, and R. H. Campbell. A Parallel Implementation of K-Means Clustering on GPUs. In PDPTA, pages 340-345, 2008.
    • (2008) PDPTA , pp. 340-345
    • Farivar, R.1    Rebolledo, D.2    Chan, E.3    Campbell, R.H.4
  • 20
    • 84872201157 scopus 로고    scopus 로고
    • URL
    • Intel. Math Kernel Library. URL https://software.intel.com/en-us/intel-mkl.
    • Math Kernel Library
  • 23
    • 4243148480 scopus 로고    scopus 로고
    • Authoritative sources in a hyperlinked environment
    • J. M. Kleinberg. Authoritative Sources in a Hyperlinked Environment. Journal of the ACM (JACM), 46(5):604-632, 1999.
    • (1999) Journal of the ACM (JACM) , vol.46 , Issue.5 , pp. 604-632
    • Kleinberg, J.M.1
  • 26
    • 78650116887 scopus 로고    scopus 로고
    • GPUMLib: A new library to combine machine learning algorithms with graphics processing units
    • 2010 10th International Conference on IEEE
    • N. Lopes, B. Ribeiro, and R. Quintas. GPUMLib: a New Library to Combine Machine Learning Algorithms with Graphics Processing Units. In Hybrid Intelligent Systems (HIS), 2010 10th International Conference on, pages 229-232. IEEE, 2010.
    • (2010) Hybrid Intelligent Systems (HIS) , pp. 229-232
    • Lopes, N.1    Ribeiro, B.2    Quintas, R.3
  • 29
    • 78651550268 scopus 로고    scopus 로고
    • Scalable parallel programming with CUDA
    • J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable Parallel Programming with CUDA. Queue, 6(2):40-53, 2008.
    • (2008) Queue , vol.6 , Issue.2 , pp. 40-53
    • Nickolls, J.1    Buck, I.2    Garland, M.3    Skadron, K.4
  • 30
    • 84876690655 scopus 로고    scopus 로고
    • URL
    • NVIDIA. CUDA GPU Occupancy Calculator. URL http://developer.download.nvidia.com/compute/cuda/CUDA-Occupancy-calculator.xls.
    • CUDA GPU Occupancy Calculator
  • 33
    • 56749102367 scopus 로고    scopus 로고
    • Implementing decision trees and forests on a GPU
    • Springer
    • T. Sharp. Implementing Decision Trees and Forests on a GPU. In Computer Vision-ECCV 2008, pages 595-608. Springer, 2008.
    • (2008) Computer Vision-ECCV 2008 , pp. 595-608
    • Sharp, T.1
  • 35
    • 84904317928 scopus 로고    scopus 로고
    • Materialization optimizations for feature selection workloads
    • C. Zhang, A. Kumar, and C. Ré. Materialization Optimizations for Feature Selection Workloads. In SIGMOD, 2014.
    • (2014) SIGMOD
    • Zhang, C.1    Kumar, A.2    Ré, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.