메뉴 건너뛰기




Volumn 20, Issue 8, 2015, Pages 508-514

Transport of defense compounds from source to sink: Lessons learned from glucosinolates

Author keywords

Defense compound; Glucosinolates; NPF transporters; Source sink distribution

Indexed keywords

ARABIDOPSIS;

EID: 84938998535     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2015.04.006     Document Type: Review
Times cited : (95)

References (77)
  • 1
    • 0035859039 scopus 로고    scopus 로고
    • Natural products and plant disease resistance
    • Dixon R.A. Natural products and plant disease resistance. Nature 2001, 411:843-847.
    • (2001) Nature , vol.411 , pp. 843-847
    • Dixon, R.A.1
  • 2
    • 0000182051 scopus 로고
    • Adaptive patterns in alkaloid physiology
    • McKey D. Adaptive patterns in alkaloid physiology. Am. Nat. 1974, 108:305-320.
    • (1974) Am. Nat. , vol.108 , pp. 305-320
    • McKey, D.1
  • 3
    • 0037311116 scopus 로고    scopus 로고
    • Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana
    • Brown P.D., et al. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 2003, 62:471-481.
    • (2003) Phytochemistry , vol.62 , pp. 471-481
    • Brown, P.D.1
  • 4
    • 84870158241 scopus 로고    scopus 로고
    • Defence on demand: mechanisms behind optimal defence patterns
    • Meldau S., et al. Defence on demand: mechanisms behind optimal defence patterns. Ann. Bot. 2012, 110:1503-1514.
    • (2012) Ann. Bot. , vol.110 , pp. 1503-1514
    • Meldau, S.1
  • 5
    • 0033911978 scopus 로고    scopus 로고
    • Optimal defense theory predicts the ontogeny of an induced nicotine defense
    • Ohnmeiss T.E., Baldwin I.T. Optimal defense theory predicts the ontogeny of an induced nicotine defense. Ecology 2000, 81:1765-1783.
    • (2000) Ecology , vol.81 , pp. 1765-1783
    • Ohnmeiss, T.E.1    Baldwin, I.T.2
  • 6
    • 81055145379 scopus 로고    scopus 로고
    • Tobacco nicotine uptake permease (NUP1) affects alkaloid metabolism
    • Hildreth S.B., et al. Tobacco nicotine uptake permease (NUP1) affects alkaloid metabolism. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:18179-18184.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 18179-18184
    • Hildreth, S.B.1
  • 7
    • 60249084921 scopus 로고    scopus 로고
    • Multidrug and toxic compound extrusion-type transporters implicated in vacuolar sequestration of nicotine in tobacco roots
    • Shoji T., et al. Multidrug and toxic compound extrusion-type transporters implicated in vacuolar sequestration of nicotine in tobacco roots. Plant Physiol. 2009, 149:708-718.
    • (2009) Plant Physiol. , vol.149 , pp. 708-718
    • Shoji, T.1
  • 8
    • 60549094219 scopus 로고    scopus 로고
    • Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum
    • Morita M., et al. Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:2447-2452.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 2447-2452
    • Morita, M.1
  • 9
    • 0037457993 scopus 로고    scopus 로고
    • Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica
    • Shitan N., et al. Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:751-756.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 751-756
    • Shitan, N.1
  • 10
    • 84878941465 scopus 로고    scopus 로고
    • Characterization of Coptis japonica CjABCB2, an ATP-binding cassette protein involved in alkaloid transport
    • Shitan N., et al. Characterization of Coptis japonica CjABCB2, an ATP-binding cassette protein involved in alkaloid transport. Phytochemistry 2013, 91:109-116.
    • (2013) Phytochemistry , vol.91 , pp. 109-116
    • Shitan, N.1
  • 11
    • 28544434112 scopus 로고    scopus 로고
    • Characterization of vacuolar transport of the endogenous alkaloid berberine in Coptis japonica
    • Otani M., et al. Characterization of vacuolar transport of the endogenous alkaloid berberine in Coptis japonica. Plant Physiol. 2005, 138:1939-1946.
    • (2005) Plant Physiol. , vol.138 , pp. 1939-1946
    • Otani, M.1
  • 12
    • 0029154658 scopus 로고
    • NTR1 encodes a high-affinity oligopeptide transporter in Arabidopsis
    • Rentsch D., et al. NTR1 encodes a high-affinity oligopeptide transporter in Arabidopsis. FEBS Lett. 1995, 370:264-268.
    • (1995) FEBS Lett. , vol.370 , pp. 264-268
    • Rentsch, D.1
  • 13
    • 0028200440 scopus 로고
    • Cloning of an arabidopsis histidine transporting protein related to nitrate and peptide transporters
    • Frommer W.B., et al. Cloning of an arabidopsis histidine transporting protein related to nitrate and peptide transporters. FEBS Lett. 1994, 347:185-189.
    • (1994) FEBS Lett. , vol.347 , pp. 185-189
    • Frommer, W.B.1
  • 14
    • 0027290722 scopus 로고
    • Cloning a plant amino acid transporter by functional complementation of a yeast amino acid transport mutant
    • Hsu L.C., et al. Cloning a plant amino acid transporter by functional complementation of a yeast amino acid transport mutant. Proc. Natl. Acad. Sci. U.S.A. 1993, 90:7441-7445.
    • (1993) Proc. Natl. Acad. Sci. U.S.A. , vol.90 , pp. 7441-7445
    • Hsu, L.C.1
  • 15
    • 0027092284 scopus 로고
    • Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast
    • Riesmeier J.W., et al. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J. 1992, 11:4705-4713.
    • (1992) EMBO J. , vol.11 , pp. 4705-4713
    • Riesmeier, J.W.1
  • 16
    • 0026597932 scopus 로고
    • Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae
    • Anderson J.A., et al. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 1992, 89:3736-3740.
    • (1992) Proc. Natl. Acad. Sci. U.S.A. , vol.89 , pp. 3736-3740
    • Anderson, J.A.1
  • 17
    • 0028501449 scopus 로고
    • An Arabidopsis peptide transporter is a member of a new class of membrane transport proteins
    • Steiner H.Y., et al. An Arabidopsis peptide transporter is a member of a new class of membrane transport proteins. Plant Cell 1994, 6:1289-1299.
    • (1994) Plant Cell , vol.6 , pp. 1289-1299
    • Steiner, H.Y.1
  • 18
    • 0027745214 scopus 로고
    • Differential expression of two related amino acid transporters with differing substrate specificity in Arabidopsis thaliana
    • Kwart M., et al. Differential expression of two related amino acid transporters with differing substrate specificity in Arabidopsis thaliana. Plant J. 1993, 4:993-1002.
    • (1993) Plant J. , vol.4 , pp. 993-1002
    • Kwart, M.1
  • 19
    • 84865206069 scopus 로고    scopus 로고
    • NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds
    • Nour-Eldin H.H., et al. NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature 2012, 488:531-534.
    • (2012) Nature , vol.488 , pp. 531-534
    • Nour-Eldin, H.H.1
  • 20
    • 77956157564 scopus 로고    scopus 로고
    • Screening for plant transporter function by expressing a normalized Arabidopsis full-length cDNA library in Xenopus oocytes
    • Nour-Eldin H.H., et al. Screening for plant transporter function by expressing a normalized Arabidopsis full-length cDNA library in Xenopus oocytes. Plant Methods 2006, 2:17.
    • (2006) Plant Methods , vol.2 , pp. 17
    • Nour-Eldin, H.H.1
  • 21
    • 84884695670 scopus 로고    scopus 로고
    • Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative Arabidopsis
    • Andersen T.G., et al. Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative Arabidopsis. Plant Cell 2013, 25:3133-3145.
    • (2013) Plant Cell , vol.25 , pp. 3133-3145
    • Andersen, T.G.1
  • 22
    • 0027134053 scopus 로고
    • Maternal effects on the expression of individual aliphatic glucosinolates in seeds and seedlings of Brassica napus
    • Magrath R., Mithen R. Maternal effects on the expression of individual aliphatic glucosinolates in seeds and seedlings of Brassica napus. Plant Breed. 1993, 111:249-252.
    • (1993) Plant Breed. , vol.111 , pp. 249-252
    • Magrath, R.1    Mithen, R.2
  • 23
    • 0000428929 scopus 로고
    • Inheritance of the major glucosinolates of rapeseed (Brassica napus) meal
    • Kondra Z.P., Stefansson B.R. inheritance of the major glucosinolates of rapeseed (Brassica napus) meal. Can. J. Plant Sci. 1970, 50:643-647.
    • (1970) Can. J. Plant Sci. , vol.50 , pp. 643-647
    • Kondra, Z.P.1    Stefansson, B.R.2
  • 24
    • 0001702450 scopus 로고
    • Mechanism of damage-induced alkaloid production in wild tobacco
    • Baldwin I.T. Mechanism of damage-induced alkaloid production in wild tobacco. J. Chem. Ecol. 1989, 15:1661-1680.
    • (1989) J. Chem. Ecol. , vol.15 , pp. 1661-1680
    • Baldwin, I.T.1
  • 25
    • 33644803873 scopus 로고    scopus 로고
    • Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology
    • Jørgensen K., et al. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology. Plant Physiol. 2005, 139:363-374.
    • (2005) Plant Physiol. , vol.139 , pp. 363-374
    • Jørgensen, K.1
  • 26
    • 78650993977 scopus 로고    scopus 로고
    • Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme
    • Jørgensen K., et al. Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme. Plant Physiol. 2011, 155:282-292.
    • (2011) Plant Physiol. , vol.155 , pp. 282-292
    • Jørgensen, K.1
  • 27
    • 0033015602 scopus 로고    scopus 로고
    • The phloem mobility of glucosinolates
    • Brudenell A.J.P., et al. The phloem mobility of glucosinolates. J. Exp. Bot. 1999, 50:745-756.
    • (1999) J. Exp. Bot. , vol.50 , pp. 745-756
    • Brudenell, A.J.P.1
  • 28
    • 0034824596 scopus 로고    scopus 로고
    • Long-distance phloem transport of glucosinolates in Arabidopsis
    • Chen S.X., et al. Long-distance phloem transport of glucosinolates in Arabidopsis. Plant Physiol. 2001, 127:194-201.
    • (2001) Plant Physiol. , vol.127 , pp. 194-201
    • Chen, S.X.1
  • 29
    • 56549101331 scopus 로고    scopus 로고
    • Got milk? The secret life of laticifers
    • Hagel J.M., et al. Got milk? The secret life of laticifers. Trends Plant Sci. 2008, 13:631-639.
    • (2008) Trends Plant Sci. , vol.13 , pp. 631-639
    • Hagel, J.M.1
  • 30
    • 0032145225 scopus 로고    scopus 로고
    • Biosynthesis of glucosinolates in the developing silique walls and seeds of Sinapis alba
    • Liangcheng D., Halkier A.B. Biosynthesis of glucosinolates in the developing silique walls and seeds of Sinapis alba. Phytochemistry 1998, 48:1145-1150.
    • (1998) Phytochemistry , vol.48 , pp. 1145-1150
    • Liangcheng, D.1    Halkier, A.B.2
  • 31
    • 35348835974 scopus 로고    scopus 로고
    • Contribution of glucosinolate transport to Arabidopsis defense responses
    • Ellerbrock B.L., et al. Contribution of glucosinolate transport to Arabidopsis defense responses. Plant Signal. Behav. 2007, 2:282-283.
    • (2007) Plant Signal. Behav. , vol.2 , pp. 282-283
    • Ellerbrock, B.L.1
  • 32
    • 77955054769 scopus 로고    scopus 로고
    • Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivores
    • Müller R., et al. Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivores. J. Chem. Ecol. 2010, 36:905-913.
    • (2010) J. Chem. Ecol. , vol.36 , pp. 905-913
    • Müller, R.1
  • 33
    • 84875483881 scopus 로고    scopus 로고
    • High-resolution metabolic mapping of cell types in plant roots
    • Moussaieff A., et al. High-resolution metabolic mapping of cell types in plant roots. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E1232-E1241.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. E1232-E1241
    • Moussaieff, A.1
  • 34
    • 85018332084 scopus 로고    scopus 로고
    • Grafting Arabidopsis
    • Andersen T.G., et al. Grafting Arabidopsis. Bioprotocol 2014, 4:e1164.
    • (2014) Bioprotocol , vol.4 , pp. e1164
    • Andersen, T.G.1
  • 35
    • 84899153273 scopus 로고    scopus 로고
    • Upon bolting the GTR1 and GTR2 transporters mediate transport of glucosinolates to the inflorescence rather than roots
    • Andersen T.G., Halkier B.A. Upon bolting the GTR1 and GTR2 transporters mediate transport of glucosinolates to the inflorescence rather than roots. Plant Signal. Behav. 2014, 9:e27740.
    • (2014) Plant Signal. Behav. , vol.9 , pp. e27740
    • Andersen, T.G.1    Halkier, B.A.2
  • 36
    • 33846321889 scopus 로고    scopus 로고
    • Macroevolution of plant defense strategies
    • Agrawal A.A. Macroevolution of plant defense strategies. Trends Ecol. Evol. 2007, 22:103-109.
    • (2007) Trends Ecol. Evol. , vol.22 , pp. 103-109
    • Agrawal, A.A.1
  • 37
    • 0000297833 scopus 로고
    • Tissue distributions of dhurrin and of enzymes involved in its metabolism in leaves of Sorghum bicolor
    • Kojima M., et al. Tissue distributions of dhurrin and of enzymes involved in its metabolism in leaves of Sorghum bicolor. Plant Physiol. 1979, 63:1022-1028.
    • (1979) Plant Physiol. , vol.63 , pp. 1022-1028
    • Kojima, M.1
  • 38
    • 4644289320 scopus 로고    scopus 로고
    • The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferum
    • Weid M., et al. The roles of latex and the vascular bundle in morphine biosynthesis in the opium poppy, Papaver somniferum. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:13957-13962.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 13957-13962
    • Weid, M.1
  • 39
    • 78149417008 scopus 로고    scopus 로고
    • Glucosinolate-accumulating S-cells in Arabidopsis leaves and flower stalks undergo programmed cell death at early stages of differentiation
    • Koroleva O.A., et al. Glucosinolate-accumulating S-cells in Arabidopsis leaves and flower stalks undergo programmed cell death at early stages of differentiation. Plant J. 2010, 64:456-469.
    • (2010) Plant J. , vol.64 , pp. 456-469
    • Koroleva, O.A.1
  • 40
    • 0033794245 scopus 로고    scopus 로고
    • Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk
    • Koroleva O.A., et al. Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol. 2000, 124:599-608.
    • (2000) Plant Physiol. , vol.124 , pp. 599-608
    • Koroleva, O.A.1
  • 41
    • 43149093135 scopus 로고    scopus 로고
    • Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense
    • Shroff R., et al. Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:6196-6201.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 6196-6201
    • Shroff, R.1
  • 42
    • 84924322632 scopus 로고    scopus 로고
    • Quantification of plant surface metabolites by matrix-assisted laser desorption mass spectrometry imaging: glucosinolates on Arabidopsis thaliana leaves
    • Shroff R., et al. Quantification of plant surface metabolites by matrix-assisted laser desorption mass spectrometry imaging: glucosinolates on Arabidopsis thaliana leaves. Plant J. 2015, 81:961-972.
    • (2015) Plant J. , vol.81 , pp. 961-972
    • Shroff, R.1
  • 43
    • 0037341186 scopus 로고    scopus 로고
    • CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis
    • Chen S., et al. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J. 2003, 33:923-937.
    • (2003) Plant J. , vol.33 , pp. 923-937
    • Chen, S.1
  • 44
    • 11144240044 scopus 로고    scopus 로고
    • Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis
    • Grubb D.C., et al. Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J. 2004, 40:893-908.
    • (2004) Plant J. , vol.40 , pp. 893-908
    • Grubb, D.C.1
  • 45
    • 34447094126 scopus 로고    scopus 로고
    • The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana
    • Gigolashvili T., et al. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J. 2007, 51:247-261.
    • (2007) Plant J. , vol.51 , pp. 247-261
    • Gigolashvili, T.1
  • 46
    • 57749103865 scopus 로고    scopus 로고
    • The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators
    • Malitsky S., et al. The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Plant Physiol. 2008, 148:2021-2049.
    • (2008) Plant Physiol. , vol.148 , pp. 2021-2049
    • Malitsky, S.1
  • 47
    • 0035093339 scopus 로고    scopus 로고
    • Bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates
    • Reintanz B., et al. Bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 2001, 13:351-367.
    • (2001) Plant Cell , vol.13 , pp. 351-367
    • Reintanz, B.1
  • 48
    • 17744374145 scopus 로고    scopus 로고
    • The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana
    • Schuster J., Binder S. The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana. Plant Mol. Biol. 2005, 57:241-254.
    • (2005) Plant Mol. Biol. , vol.57 , pp. 241-254
    • Schuster, J.1    Binder, S.2
  • 49
    • 84908587274 scopus 로고    scopus 로고
    • Elucidating the role of transport processes in leaf glucosinolate distribution
    • Madsen S.R., et al. Elucidating the role of transport processes in leaf glucosinolate distribution. Plant Physiol. 2014, 166:1450-1462.
    • (2014) Plant Physiol. , vol.166 , pp. 1450-1462
    • Madsen, S.R.1
  • 50
    • 84893698019 scopus 로고    scopus 로고
    • Root exudates: the hidden part of plant defense
    • Baetz U., Martinoia E. Root exudates: the hidden part of plant defense. Trends Plant Sci. 2014, 19:90-98.
    • (2014) Trends Plant Sci. , vol.19 , pp. 90-98
    • Baetz, U.1    Martinoia, E.2
  • 51
    • 0344723012 scopus 로고    scopus 로고
    • Control of soil-borne plant pests using glucosinolate-containing plants
    • Brown P.D., Morra M.J. Control of soil-borne plant pests using glucosinolate-containing plants. Adv. Agron. 1997, 61:167-231.
    • (1997) Adv. Agron. , vol.61 , pp. 167-231
    • Brown, P.D.1    Morra, M.J.2
  • 52
    • 33745942317 scopus 로고    scopus 로고
    • The role of root exudates in rhizosphere interactions with plants and other organisms
    • Bais H.P., et al. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 2006, 57:233-266.
    • (2006) Annu. Rev. Plant Biol. , vol.57 , pp. 233-266
    • Bais, H.P.1
  • 53
    • 84876771750 scopus 로고    scopus 로고
    • Formation of the unusual semivolatile diterpene rhizathalene by the Arabidopsis class i terpene synthase TPS08 in the root stele is involved in defense against belowground herbivory
    • Vaughan M.M., et al. Formation of the unusual semivolatile diterpene rhizathalene by the Arabidopsis class i terpene synthase TPS08 in the root stele is involved in defense against belowground herbivory. Plant Cell 2013, 25:1108-1125.
    • (2013) Plant Cell , vol.25 , pp. 1108-1125
    • Vaughan, M.M.1
  • 54
    • 40549096780 scopus 로고    scopus 로고
    • Diterpene phytoalexins are biosynthesized in and exuded from the roots of rice seedlings
    • Toyomasu T., et al. Diterpene phytoalexins are biosynthesized in and exuded from the roots of rice seedlings. Biosci. Biotechnol. Biochem. 2008, 72:562-567.
    • (2008) Biosci. Biotechnol. Biochem. , vol.72 , pp. 562-567
    • Toyomasu, T.1
  • 55
    • 84911476750 scopus 로고    scopus 로고
    • Profiling of secondary metabolites in root exudates of Arabidopsis thaliana
    • Strehmel N., et al. Profiling of secondary metabolites in root exudates of Arabidopsis thaliana. Phytochemistry 2014, 108:35-46.
    • (2014) Phytochemistry , vol.108 , pp. 35-46
    • Strehmel, N.1
  • 56
    • 38949100558 scopus 로고    scopus 로고
    • Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants
    • Vivanco J.M., et al. Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiol. 2008, 146:762-771.
    • (2008) Plant Physiol. , vol.146 , pp. 762-771
    • Vivanco, J.M.1
  • 57
    • 84888307631 scopus 로고    scopus 로고
    • Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency
    • Fourcroy P., et al. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol. 2014, 201:155-167.
    • (2014) New Phytol. , vol.201 , pp. 155-167
    • Fourcroy, P.1
  • 58
    • 0037340924 scopus 로고    scopus 로고
    • 2-Phenylethylisothiocyanate concentration and microbial community composition in the rhizosphere of canola
    • Rumberger A., Marschner P. 2-Phenylethylisothiocyanate concentration and microbial community composition in the rhizosphere of canola. Soil Biol. Biochem. 2003, 35:445-452.
    • (2003) Soil Biol. Biochem. , vol.35 , pp. 445-452
    • Rumberger, A.1    Marschner, P.2
  • 59
    • 70350294574 scopus 로고    scopus 로고
    • Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots
    • Bressan M., et al. Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J. 2009, 3:1243-1257.
    • (2009) ISME J. , vol.3 , pp. 1243-1257
    • Bressan, M.1
  • 60
    • 79951740200 scopus 로고    scopus 로고
    • Enhanced glucosinolates in root exudates of Brassica rapa ssp rapa mediated by salicylic acid and methyl jasmonate
    • Schreiner M., et al. Enhanced glucosinolates in root exudates of Brassica rapa ssp rapa mediated by salicylic acid and methyl jasmonate. J. Agric. Food Chem. 2011, 59:1400-1405.
    • (2011) J. Agric. Food Chem. , vol.59 , pp. 1400-1405
    • Schreiner, M.1
  • 61
    • 4644298103 scopus 로고    scopus 로고
    • The challenges of moving chemicals within and out of cells: insights into the transport of plant natural products
    • Grotewold E. The challenges of moving chemicals within and out of cells: insights into the transport of plant natural products. Planta 2004, 219:906-909.
    • (2004) Planta , vol.219 , pp. 906-909
    • Grotewold, E.1
  • 62
  • 63
    • 0034816345 scopus 로고    scopus 로고
    • Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds
    • Kliebenstein D.J., et al. Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds. Genetics 2001, 159:359-370.
    • (2001) Genetics , vol.159 , pp. 359-370
    • Kliebenstein, D.J.1
  • 64
    • 77953366823 scopus 로고    scopus 로고
    • Biosynthesis of glucosinolates - gene discovery and beyond
    • Sonderby I.E., et al. Biosynthesis of glucosinolates - gene discovery and beyond. Trends Plant Sci. 2010, 15:283-290.
    • (2010) Trends Plant Sci. , vol.15 , pp. 283-290
    • Sonderby, I.E.1
  • 65
    • 57749110486 scopus 로고    scopus 로고
    • Subclade of flavin-monooxygenases involved in aliphatic glucosinolate biosynthesis
    • Li J., et al. Subclade of flavin-monooxygenases involved in aliphatic glucosinolate biosynthesis. Plant Physiol. 2008, 148:1721-1733.
    • (2008) Plant Physiol. , vol.148 , pp. 1721-1733
    • Li, J.1
  • 66
    • 34249783437 scopus 로고    scopus 로고
    • Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis
    • Hansen B.G., et al. Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant J. 2007, 50:902-910.
    • (2007) Plant J. , vol.50 , pp. 902-910
    • Hansen, B.G.1
  • 67
    • 79953067657 scopus 로고    scopus 로고
    • Metabolic engineering in Nicotiana benthamiana reveals key enzyme functions in Arabidopsis indole glucosinolate modification
    • Pfalz M., et al. Metabolic engineering in Nicotiana benthamiana reveals key enzyme functions in Arabidopsis indole glucosinolate modification. Plant Cell 2011, 23:716-729.
    • (2011) Plant Cell , vol.23 , pp. 716-729
    • Pfalz, M.1
  • 68
    • 58149242371 scopus 로고    scopus 로고
    • Glucosinolate metabolites required for an Arabidopsis innate immune response
    • Clay N.K., et al. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 2009, 323:95-101.
    • (2009) Science , vol.323 , pp. 95-101
    • Clay, N.K.1
  • 69
    • 58149215723 scopus 로고    scopus 로고
    • A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense
    • Bednarek P., et al. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 2009, 323:101-106.
    • (2009) Science , vol.323 , pp. 101-106
    • Bednarek, P.1
  • 70
    • 58149358971 scopus 로고    scopus 로고
    • Piecing together the transport pathway of aliphatic glucosinolates
    • Halkier B.A., Nour-Eldin H.H. Piecing together the transport pathway of aliphatic glucosinolates. Phytochem. Rev. 2009, 8:53-67.
    • (2009) Phytochem. Rev. , vol.8 , pp. 53-67
    • Halkier, B.A.1    Nour-Eldin, H.H.2
  • 71
    • 84888399274 scopus 로고    scopus 로고
    • Morphine biosynthesis in opium poppy involves two cell types: sieve elements and laticifers
    • Onoyovwe A., et al. morphine biosynthesis in opium poppy involves two cell types: sieve elements and laticifers. Plant Cell 2013, 25:4110-4122.
    • (2013) Plant Cell , vol.25 , pp. 4110-4122
    • Onoyovwe, A.1
  • 72
    • 79961195841 scopus 로고    scopus 로고
    • Single-cell proteomic analysis of glucosinolate-rich S-cells in Arabidopsis thaliana
    • Koroleva O.A., Cramer R. Single-cell proteomic analysis of glucosinolate-rich S-cells in Arabidopsis thaliana. Methods 2011, 54:413-423.
    • (2011) Methods , vol.54 , pp. 413-423
    • Koroleva, O.A.1    Cramer, R.2
  • 73
    • 0346033436 scopus 로고    scopus 로고
    • Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways
    • Mikkelsen M.D., et al. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol. 2003, 131:298-308.
    • (2003) Plant Physiol. , vol.131 , pp. 298-308
    • Mikkelsen, M.D.1
  • 74
    • 84938748490 scopus 로고    scopus 로고
    • The glucosinolate biosynthetic gene AOP2 mediates feed-back regulation of jasmonic acid signaling in Arabidopsis
    • Published online March 7, 2015
    • Burow M., et al. The glucosinolate biosynthetic gene AOP2 mediates feed-back regulation of jasmonic acid signaling in Arabidopsis. Mol. Plant. 2015, Published online March 7, 2015. 10.1016/j.molp.2015.03.001.
    • (2015) Mol. Plant.
    • Burow, M.1
  • 75
    • 84907045650 scopus 로고    scopus 로고
    • BHLH05 is an interaction partner of MYB51 and a novel regulator of glucosinolate biosynthesis in Arabidopsis
    • Frerigmann H., et al. bHLH05 is an interaction partner of MYB51 and a novel regulator of glucosinolate biosynthesis in Arabidopsis. Plant Physiol. 2014, 166:349-369.
    • (2014) Plant Physiol. , vol.166 , pp. 349-369
    • Frerigmann, H.1
  • 76
    • 33646879560 scopus 로고    scopus 로고
    • Altering glucosinolate profiles modulates disease resistance in plants
    • Brader G., et al. Altering glucosinolate profiles modulates disease resistance in plants. Plant J. 2006, 46:758-767.
    • (2006) Plant J. , vol.46 , pp. 758-767
    • Brader, G.1
  • 77
    • 84929110780 scopus 로고    scopus 로고
    • The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis
    • Published online February 4, 2015
    • Saito H., et al. The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis. Nat. Commun. 2015, Published online February 4, 2015. 10.1038/ncomms7095.
    • (2015) Nat. Commun.
    • Saito, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.