메뉴 건너뛰기




Volumn 6, Issue , 2015, Pages 13-34

An Integrated Device View on Photo-Electrochemical Solar-Hydrogen Generation

Author keywords

photo electrochemistry; solar devices; solar fuels; solar water splitting

Indexed keywords

ELECTROCHEMISTRY; HYDROGEN PRODUCTION; INTEGRATION; LIFE CYCLE; SOLAR ENERGY;

EID: 84938818763     PISSN: 19475438     EISSN: None     Source Type: Journal    
DOI: 10.1146/annurev-chembioeng-061114-123357     Document Type: Article
Times cited : (65)

References (123)
  • 1
    • 36448973117 scopus 로고    scopus 로고
    • Powering the planet
    • Lewis NS. 2007. Powering the planet. MRS Bull. 32:808-20
    • (2007) MRS Bull. , vol.32 , pp. 808-820
    • Lewis, N.S.1
  • 2
    • 84866367282 scopus 로고    scopus 로고
    • Concentrating solar thermal power and thermochemical fuels
    • Romero M, Steinfeld A. 2012. Concentrating solar thermal power and thermochemical fuels. Energy Environ. Sci. 5:9234-45
    • (2012) Energy Environ. Sci. , vol.5 , pp. 9234-9245
    • Romero, M.1    Steinfeld, A.2
  • 6
    • 77956838396 scopus 로고    scopus 로고
    • Photocatalytic water splitting: Recent progress and future challenges
    • Maeda K, Domen K. 2010. Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1(18):2655-61
    • (2010) J. Phys. Chem. Lett. , vol.1 , Issue.18 , pp. 2655-2661
    • Maeda, K.1    Domen, K.2
  • 7
    • 84902144692 scopus 로고    scopus 로고
    • Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting
    • Hisatomi T, Kubota J, Domen K. 2014. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43:7520-35
    • (2014) Chem. Soc. Rev. , vol.43 , pp. 7520-7535
    • Hisatomi, T.1    Kubota, J.2    Domen, K.3
  • 9
    • 84860835749 scopus 로고    scopus 로고
    • Synthetic fuels from biomass using concentrated solar energy-A review
    • Nzihou A, FlamantG, Stanmore B. 2012. Synthetic fuels from biomass using concentrated solar energy-a review. Energy 42(1):121-31
    • (2012) Energy , vol.42 , Issue.1 , pp. 121-131
    • Nzihou, A.1    Flamant, G.2    Stanmore, B.3
  • 10
    • 79956054956 scopus 로고    scopus 로고
    • Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement
    • Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, et al. 2011. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332(6031):805-9
    • (2011) Science , vol.332 , Issue.6031 , pp. 805-809
    • Blankenship, R.E.1    Tiede, D.M.2    Barber, J.3    Brudvig, G.W.4    Fleming, G.5
  • 11
    • 84865120266 scopus 로고    scopus 로고
    • Opportunities and challenges for a sustainable energy future
    • Chu S, Majumdar A. 2012. Opportunities and challenges for a sustainable energy future. Nature 488(7411):294-303
    • (2012) Nature , vol.488 , Issue.7411 , pp. 294-303
    • Chu, S.1    Majumdar, A.2
  • 12
    • 33750458683 scopus 로고    scopus 로고
    • Powering the planet: Chemical challenges in solar energy utilization
    • Lewis N, Nocera D. 2006. Powering the planet: chemical challenges in solar energy utilization. PNAS 103:15729-35
    • (2006) PNAS , vol.103 , pp. 15729-15735
    • Lewis, N.1    Nocera, D.2
  • 14
    • 0033618581 scopus 로고    scopus 로고
    • A realizable renewable energy future
    • Turner JA. 1999. A realizable renewable energy future. Science 285(5428):687-89
    • (1999) Science , vol.285 , Issue.5428 , pp. 687-689
    • Turner, J.A.1
  • 17
    • 0032540476 scopus 로고    scopus 로고
    • A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting
    • Khaselev O, Turner JA. 1998. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280(5362):425-27
    • (1998) Science , vol.280 , Issue.5362 , pp. 425-427
    • Khaselev, O.1    Turner, J.A.2
  • 18
    • 0033634510 scopus 로고    scopus 로고
    • Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis
    • Licht S, Wang B, Mukerji S, Soga T, Umeno M, Tributsch H. 2000. Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. J. Phys. Chem. B 104(38):8920-24
    • (2000) J. Phys. Chem. B , vol.104 , Issue.38 , pp. 8920-8924
    • Licht, S.1    Wang, B.2    Mukerji, S.3    Soga, T.4    Umeno, M.5    Tributsch, H.6
  • 19
    • 35248851939 scopus 로고    scopus 로고
    • Solar hydrogen production by water splitting with a conversion efficiency of 18%
    • Peharz G, Dimroth F,Wittstadt U. 2007. Solar hydrogen production by water splitting with a conversion efficiency of 18%. Int. J. Hydrogen Energy 32(15):3248-52
    • (2007) Int. J. Hydrogen Energy , vol.32 , Issue.15 , pp. 3248-3252
    • Peharz, G.1    Dimroth, F.2    Wittstadt, U.3
  • 20
    • 84883008345 scopus 로고    scopus 로고
    • Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
    • Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z, et al. 2013. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6:1983-2002
    • (2013) Energy Environ. Sci. , vol.6 , pp. 1983-2002
    • Pinaud, B.A.1    Benck, J.D.2    Seitz, L.C.3    Forman, A.J.4    Chen, Z.5
  • 23
    • 84888124647 scopus 로고    scopus 로고
    • Pilot scale demonstration of a 100-kWth solar thermochemical plant for the thermal dissociation of ZnO
    • VillasmilW, Brkic M, WuilleminD,Meier A, Steinfeld A. 2013. Pilot scale demonstration of a 100-kWth solar thermochemical plant for the thermal dissociation of ZnO. J. Solar Energy Eng. 136(1):011017
    • (2013) J. Solar Energy Eng. , vol.136 , Issue.1 , pp. 011017
    • Villasmil, W.1    Brkic, M.2    Wuillemin, D.3    Meier, A.4    Steinfeld, A.5
  • 24
    • 84890537516 scopus 로고    scopus 로고
    • Robust production of purified H2 in a stable, self-regulating, and continuously operating solar fuel generator
    • Modestino MA, Walczak KA, Berger A, Evans CM, Haussener S, et al. 2014. Robust production of purified H2 in a stable, self-regulating, and continuously operating solar fuel generator. Energy Environ. Sci. 7:297-301
    • (2014) Energy Environ. Sci. , vol.7 , pp. 297-301
    • Modestino, M.A.1    Walczak, K.A.2    Berger, A.3    Evans, C.M.4    Haussener, S.5
  • 25
    • 80555150640 scopus 로고    scopus 로고
    • Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts
    • Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, et al. 2011. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334(6056):645-48
    • (2011) Science , vol.334 , Issue.6056 , pp. 645-648
    • Reece, S.Y.1    Hamel, J.A.2    Sung, K.3    Jarvi, T.D.4    Esswein, A.J.5
  • 26
    • 84870656447 scopus 로고    scopus 로고
    • Highly efficient water splitting by a dual-absorber tandem cell
    • Brillet J, Yum J-H, Cornuz M, Hisatomi T, Solarska R, et al. 2012. Highly efficient water splitting by a dual-absorber tandem cell. Nat. Photon 6(12):824-28
    • (2012) Nat. Photon , vol.6 , Issue.12 , pp. 824-828
    • Brillet, J.1    Yum, J.-H.2    Cornuz, M.3    Hisatomi, T.4    Solarska, R.5
  • 27
    • 84872917706 scopus 로고    scopus 로고
    • Resonant light trapping in ultrathin films for water splitting
    • Dotan H, Kfir O, Sharlin E, Blank O, Gross M, et al. 2013. Resonant light trapping in ultrathin films for water splitting. Nat. Mater. 12(2):158-64
    • (2013) Nat. Mater. , vol.12 , Issue.2 , pp. 158-164
    • Dotan, H.1    Kfir, O.2    Sharlin, E.3    Blank, O.4    Gross, M.5
  • 29
    • 84887858384 scopus 로고    scopus 로고
    • Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems
    • Haussener S, Hu S, Xiang C,Weber AZ, Lewis N. 2013. Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6:3605-18
    • (2013) Energy Environ. Sci. , vol.6 , pp. 3605-3618
    • Haussener, S.1    Hu, S.2    Xiang, C.3    Weber, A.Z.4    Lewis, N.5
  • 30
    • 84882257972 scopus 로고    scopus 로고
    • An integrated, systems approach to the development of solar fuel generators
    • LewisN. 2013. An integrated, systems approach to the development of solar fuel generators. ECS Interface 22:43-50
    • (2013) ECS Interface , vol.22 , pp. 43-50
    • Lewis, N.1
  • 31
    • 84861174023 scopus 로고    scopus 로고
    • The artificial leaf
    • Nocera D. 2012. The artificial leaf. Acc. Chem. Res. 45:767-76
    • (2012) Acc. Chem. Res. , vol.45 , pp. 767-776
    • Nocera, D.1
  • 32
    • 4043112177 scopus 로고    scopus 로고
    • Sustainable hydrogen production
    • Turner JA. 2004. Sustainable hydrogen production. Science 305(5686):972-74
    • (2004) Science , vol.305 , Issue.5686 , pp. 972-974
    • Turner, J.A.1
  • 33
    • 0001877830 scopus 로고    scopus 로고
    • High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes
    • Rocheleau RE, Miller EL, Misra A. 1998. High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes. Energy Fuels 12(1):3-10
    • (1998) Energy Fuels , vol.12 , Issue.1 , pp. 3-10
    • Rocheleau, R.E.1    Miller, E.L.2    Misra, A.3
  • 34
    • 84887986430 scopus 로고    scopus 로고
    • A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency
    • Jacobsson TJ, Fjällström V, Sahlberg M, Edoff M, Edvinsson T. 2013. A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency. Energy Environ. Sci. 6:3676-83
    • (2013) Energy Environ. Sci. , vol.6 , pp. 3676-3683
    • Jacobsson, T.J.1    Fjällström, V.2    Sahlberg, M.3    Edoff, M.4    Edvinsson, T.5
  • 35
    • 84991383884 scopus 로고    scopus 로고
    • Highly efficient solar hydrogen generation-an integrated concept joining III-V solar cells with PEM electrolysis cells
    • Rau S, Vierrath S, Ohlmann J, Fallisch A, Lackner D, et al. 2014. Highly efficient solar hydrogen generation-an integrated concept joining III-V solar cells with PEM electrolysis cells. Energy Technol. 2(1):43-53
    • (2014) Energy Technol. , vol.2 , Issue.1 , pp. 43-53
    • Rau, S.1    Vierrath, S.2    Ohlmann, J.3    Fallisch, A.4    Lackner, D.5
  • 36
    • 84881162564 scopus 로고    scopus 로고
    • Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode
    • Abdi FF, Han L, Smets AHM, ZemanM, Dam B, van de Krol R. 2013. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4:2195
    • (2013) Nat. Commun. , vol.4 , pp. 2195
    • Abdi, F.F.1    Han, L.2    Smets, A.H.M.3    Zeman, M.4    Dam, B.5    Van De Krol, R.6
  • 37
    • 84902983122 scopus 로고    scopus 로고
    • Sustainable solar hydrogen production: From photoelectrochemical cells to PV-electrolyzers and back again
    • Jacobsson JT, Fjällström V, Edoff M, Edvinsson T. 2014. Sustainable solar hydrogen production: from photoelectrochemical cells to PV-electrolyzers and back again. Energy Environ. Sci. 7:2056-70
    • (2014) Energy Environ. Sci. , vol.7 , pp. 2056-2070
    • Jacobsson, J.T.1    Fjällström, V.2    Edoff, M.3    Edvinsson, T.4
  • 39
    • 84876462935 scopus 로고    scopus 로고
    • Solar-to-chemical energy conversion with photoelectrochemical tandem cells
    • Sivula K. 2013. Solar-to-chemical energy conversion with photoelectrochemical tandem cells. CHIMIA Int. J. Chem. 67(3):155-61
    • (2013) CHIMIA Int. J. Chem. , vol.67 , Issue.3 , pp. 155-161
    • Sivula, K.1
  • 42
    • 66249098551 scopus 로고    scopus 로고
    • Multiple scattering, radiative transfer, and weak localization in discrete random media: Unified microphysical approach
    • Mishchenko MI. 2008. Multiple scattering, radiative transfer, and weak localization in discrete random media: unified microphysical approach. Rev. Geophys. 46(2):RG2003
    • (2008) Rev. Geophys. , vol.46 , Issue.2 , pp. RG2003
    • Mishchenko, M.I.1
  • 44
    • 0030218236 scopus 로고    scopus 로고
    • Physical chemistry of semiconductor-liquid interfaces
    • Nozik AJ, Memming R. 1996. Physical chemistry of semiconductor-liquid interfaces. J. Phys. Chem. 100(31):13061-78
    • (1996) J. Phys. Chem. , vol.100 , Issue.31 , pp. 13061-13078
    • Nozik, A.J.1    Memming, R.2
  • 49
    • 84938767984 scopus 로고    scopus 로고
    • Heat transfer modeling in integrated photoelectrochemical hydrogen generators using concentrated irradiation
    • Aug. 10-15, Kyoto, Jpn
    • Tembhurne S, Dumortier M, Haussener S. 2014. Heat transfer modeling in integrated photoelectrochemical hydrogen generators using concentrated irradiation. In Proc. 15th Int. Heat Transf. Conf., Aug. 10-15, Kyoto, Jpn.
    • (2014) Proc. 15th Int. Heat Transf. Conf.
    • Tembhurne, S.1    Dumortier, M.2    Haussener, S.3
  • 50
    • 0000697223 scopus 로고    scopus 로고
    • Photoelectrochemical production of hydrogen: Engineering loss analysis
    • Rocheleau RE, Miller EL. 1997. Photoelectrochemical production of hydrogen: engineering loss analysis. Int. J. Hydrogen Energy 22:771-82
    • (1997) Int. J. Hydrogen Energy , vol.22 , pp. 771-782
    • Rocheleau, R.E.1    Miller, E.L.2
  • 51
    • 84875244097 scopus 로고    scopus 로고
    • Modeling integrated photovoltaic-electrochemical devices using steady-state equivalent circuits
    • Winkler MT, Cox CR, Nocera DG, Buonassisi T. 2013. Modeling integrated photovoltaic-electrochemical devices using steady-state equivalent circuits. PNAS 110(12):E1076-82
    • (2013) PNAS , vol.110 , Issue.12 , pp. E1076-E1082
    • Winkler, M.T.1    Cox, C.R.2    Nocera, D.G.3    Buonassisi, T.4
  • 52
    • 84883669048 scopus 로고    scopus 로고
    • An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems
    • Hu S, Xiang C, Haussener S, Berger AD, Lewis NS. 2013. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6:2984-93
    • (2013) Energy Environ. Sci. , vol.6 , pp. 2984-2993
    • Hu, S.1    Xiang, C.2    Haussener, S.3    Berger, A.D.4    Lewis, N.S.5
  • 53
    • 84866841577 scopus 로고    scopus 로고
    • Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves
    • Surendranath Y, BediakoDK, Nocera DG. 2012. Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves. PNAS 109:15617
    • (2012) PNAS , vol.109 , pp. 15617
    • Surendranath, Y.1    Bediako, D.K.2    Nocera, D.G.3
  • 55
    • 79451474621 scopus 로고    scopus 로고
    • Transient phenomenological modeling of photoelectrochemical cells for water splitting-application to undoped hematite electrodes
    • AndradeL, LopesT, Aguilar RibeiroH,Mendes A. 2011. Transient phenomenological modeling of photoelectrochemical cells for water splitting-application to undoped hematite electrodes. Int. J. Hydrogen Energy 36(1):175-88
    • (2011) Int. J. Hydrogen Energy , vol.36 , Issue.1 , pp. 175-188
    • Andrade, L.1    Lopes, T.2    Aguilar Ribeiro, H.3    Mendes, A.4
  • 56
    • 84896962167 scopus 로고    scopus 로고
    • Material requirements for membrane separators in a watersplitting photoelectrochemical cell
    • Berger A, Segalman RA, Newman J. 2014. Material requirements for membrane separators in a watersplitting photoelectrochemical cell. Energy Environ. Sci. 7:1468-76
    • (2014) Energy Environ. Sci. , vol.7 , pp. 1468-1476
    • Berger, A.1    Segalman, R.A.2    Newman, J.3
  • 58
    • 84904791728 scopus 로고    scopus 로고
    • Design of membrane-encapsulated wireless photoelectrochemical cells for hydrogen production
    • SinghMR, Stevens JC, Weber AZ. 2014. Design of membrane-encapsulated wireless photoelectrochemical cells for hydrogen production. J. Electrochem. Soc. 161(8):E3283-96
    • (2014) J. Electrochem. Soc. , vol.161 , Issue.8 , pp. E3283-E3296
    • Singh, M.R.1    Stevens, J.C.2    Weber, A.Z.3
  • 59
    • 0000658390 scopus 로고
    • Limiting and realizable efficiencies of solar photolysis of water
    • Bolton JR, Strickler SJ, Connolly JS. 1985. Limiting and realizable efficiencies of solar photolysis of water. Nature 316(6028):495-500
    • (1985) Nature , vol.316 , Issue.6028 , pp. 495-500
    • Bolton, J.R.1    Strickler, S.J.2    Connolly, J.S.3
  • 60
    • 35348875044 scopus 로고
    • Electrochemical photolysis of water at a semiconductor electrode
    • Fujishima A, Honda K. 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37-38
    • (1972) Nature , vol.238 , Issue.5358 , pp. 37-38
    • Fujishima, A.1    Honda, K.2
  • 61
    • 84857517594 scopus 로고    scopus 로고
    • Recent advances in hybrid photocatalysts for solar fuel production
    • Tran PD,Wong LH, Barber J, Loo JSC. 2012. Recent advances in hybrid photocatalysts for solar fuel production. Energy Environ. Sci. 5(3):5902-18
    • (2012) Energy Environ. Sci. , vol.5 , Issue.3 , pp. 5902-5918
    • Tran, P.D.1    Wong, L.H.2    Barber, J.3    Loo, J.S.C.4
  • 62
    • 79951513799 scopus 로고    scopus 로고
    • Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals
    • Chen X, Liu L, Yu PY, Mao SS. 2011. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746-50
    • (2011) Science , vol.331 , Issue.6018 , pp. 746-750
    • Chen, X.1    Liu, L.2    Yu, P.Y.3    Mao, S.S.4
  • 64
    • 34547486889 scopus 로고    scopus 로고
    • Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications
    • Chen X, Mao SS. 2007. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107(7):2891-959
    • (2007) Chem. Rev. , vol.107 , Issue.7 , pp. 2891-2959
    • Chen, X.1    Mao, S.S.2
  • 65
    • 84873124833 scopus 로고    scopus 로고
    • In rust we trustHematite-The prospective inorganic backbone for artificial photosynthesis
    • Bora DK, Braun A, Constable EC. 2013. In rust we trust. Hematite-the prospective inorganic backbone for artificial photosynthesis. Energy Environ. Sci. 6(2):407-25
    • (2013) Energy Environ. Sci. , vol.6 , Issue.2 , pp. 407-425
    • Bora, D.K.1    Braun, A.2    Constable, E.C.3
  • 67
    • 84883143705 scopus 로고    scopus 로고
    • Identifying champion nanostructures for solar water-splitting
    • Warren SC, Vötchovsky K, Dotan H, Leroy CM, Cornuz M, et al. 2013. Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12(9):842-49
    • (2013) Nat. Mater. , vol.12 , Issue.9 , pp. 842-849
    • Warren, S.C.1    Vötchovsky, K.2    Dotan, H.3    Leroy, C.M.4    Cornuz, M.5
  • 68
    • 84961368233 scopus 로고    scopus 로고
    • Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting
    • Kim JY, Magesh G, Youn DH, Jang J-W, Kubota J, et al. 2013. Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci. Rep. 3:2681
    • (2013) Sci. Rep. , vol.3 , pp. 2681
    • Kim, J.Y.1    Magesh, G.2    Youn, D.H.3    Jang, J.-W.4    Kubota, J.5
  • 70
    • 84893491355 scopus 로고    scopus 로고
    • Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte
    • Spurgeon JM, Velazquez JM, McDowell MT. 2014. Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte. Phys. Chem. Chem. Phys. 16(8):3623-31
    • (2014) Phys. Chem. Chem. Phys. , vol.16 , Issue.8 , pp. 3623-3631
    • Spurgeon, J.M.1    Velazquez, J.M.2    McDowell, M.T.3
  • 71
    • 80053315485 scopus 로고    scopus 로고
    • Solar hydrogen generation from seawater with a modified BiVO4 photoanode
    • Luo W, Yang Z, Li Z, Zhang J, Liu J, et al. 2011. Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ. Sci. 4(10):4046-51
    • (2011) Energy Environ. Sci. , vol.4 , Issue.10 , pp. 4046-4051
    • Luo, W.1    Yang, Z.2    Li, Z.3    Zhang, J.4    Liu, J.5
  • 72
    • 84860523548 scopus 로고    scopus 로고
    • Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes
    • Abdi FF, van de Krol R. 2012. Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes. J. Phys. Chem. C 116(17):9398-404
    • (2012) J. Phys. Chem. C , vol.116 , Issue.17 , pp. 9398-9404
    • Abdi, F.F.1    Van De Krol, R.2
  • 73
    • 38849097143 scopus 로고    scopus 로고
    • Visible light induced photoelectrochemical properties of n-BiVO4 and n-BiVO4/p-Co3O4
    • LongMC, CaiWM, Kisch H. 2007. Visible light induced photoelectrochemical properties of n-BiVO4 and n-BiVO4/p-Co3O4. J. Phys. Chem. C 112(2):548-54
    • (2007) J. Phys. Chem. C , vol.112 , Issue.2 , pp. 548-554
    • Long, M.C.1    Cai, W.M.2    Kisch, H.3
  • 75
    • 84890423317 scopus 로고    scopus 로고
    • Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition
    • Lichterman MF, Shaner MR, Handler SG, Brunschwig BS, Gray HB, et al. 2013. Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition. J. Phys. Chem. Lett. 4(23):4188-91
    • (2013) J. Phys. Chem. Lett. , vol.4 , Issue.23 , pp. 4188-4191
    • Lichterman, M.F.1    Shaner, M.R.2    Handler, S.G.3    Brunschwig, B.S.4    Gray, H.B.5
  • 76
    • 0035254142 scopus 로고    scopus 로고
    • High-efficiency integrated multijunction photovoltaic/ electrolysis systems for hydrogen production
    • Khaselev O, Bansal A, Turner JA. 2001. High-efficiency integrated multijunction photovoltaic/ electrolysis systems for hydrogen production. Int. J. Hydrogen Energy 26(2):127-32
    • (2001) Int. J. Hydrogen Energy , vol.26 , Issue.2 , pp. 127-132
    • Khaselev, O.1    Bansal, A.2    Turner, J.A.3
  • 77
    • 84887844198 scopus 로고    scopus 로고
    • Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production
    • Lin Y, Battaglia C, BoccardM,Hettick M, Yu Z, et al. 2013. Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production. Nano Lett. 13(11):5615-18
    • (2013) Nano Lett. , vol.13 , Issue.11 , pp. 5615-5618
    • Lin, Y.1    Battaglia, C.2    Boccard, M.3    Hettick, M.4    Yu, Z.5
  • 78
    • 74249091524 scopus 로고    scopus 로고
    • Energyconversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes
    • Boettcher SW, Spurgeon JM, Putnam MC, Warren EL, Turner-Evans DB, et al. 2010. Energyconversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes. Science 327(5962):185-87
    • (2010) Science , vol.327 , Issue.5962 , pp. 185-187
    • Boettcher, S.W.1    Spurgeon, J.M.2    Putnam, M.C.3    Warren, E.L.4    Turner-Evans, D.B.5
  • 81
    • 84907578473 scopus 로고    scopus 로고
    • An experimental andmodeling/simulationbased evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system
    • Jin J,Walczak K, SinghMR, Karp C, LewisN,XiangC. 2014. An experimental andmodeling/simulationbased evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system. Energy Environ. Sci. 7:3371-80
    • (2014) Energy Environ. Sci. , vol.7 , pp. 3371-3380
    • Jin, J.1    Walczak, K.2    Singh, M.R.3    Karp, C.4    Lewis, N.5    Xiang, C.6
  • 83
    • 84906242019 scopus 로고    scopus 로고
    • Sunlight absorption in water-efficiency and design implications for photoelectrochemical devices
    • Döscher H, Geisz JF, DeutschTG, Turner JA. 2014. Sunlight absorption in water-efficiency and design implications for photoelectrochemical devices. Energy Environ. Sci. 7:2951-56
    • (2014) Energy Environ. Sci. , vol.7 , pp. 2951-2956
    • Döscher, H.1    Geisz, J.F.2    Deutsch, T.G.3    Turner, J.A.4
  • 85
    • 84910134467 scopus 로고    scopus 로고
    • Design and cost considerations for practical solar-hydrogen generators
    • Rodriguez CA, Modestino MA, Psaltis D, Moser C. 2014. Design and cost considerations for practical solar-hydrogen generators. Energy Environ. Sci. 7(12):3828-35
    • (2014) Energy Environ. Sci. , vol.7 , Issue.12 , pp. 3828-3835
    • Rodriguez, C.A.1    Modestino, M.A.2    Psaltis, D.3    Moser, C.4
  • 86
    • 55049101346 scopus 로고    scopus 로고
    • Optimization of solar powered hydrogen production using photovoltaic electrolysis devices
    • Gibson TL, Kelly NA. 2008. Optimization of solar powered hydrogen production using photovoltaic electrolysis devices. Int. J. Hydrogen Energy 33(21):5931-40
    • (2008) Int. J. Hydrogen Energy , vol.33 , Issue.21 , pp. 5931-5940
    • Gibson, T.L.1    Kelly, N.A.2
  • 88
    • 0038219744 scopus 로고    scopus 로고
    • PV autonomous installation to produce hydrogen via electrolysis, and its use in FC buses
    • Vidueira JM, Contreras A, Veziroglu TN. 2003. PV autonomous installation to produce hydrogen via electrolysis, and its use in FC buses. Int. J. Hydrogen Energy 28(9):927-37
    • (2003) Int. J. Hydrogen Energy , vol.28 , Issue.9 , pp. 927-937
    • Vidueira, J.M.1    Contreras, A.2    Veziroglu, T.N.3
  • 89
    • 44649091254 scopus 로고    scopus 로고
    • A solar-powered, high-efficiency hydrogen fueling system using high-pressure electrolysis of water: Design and initial results
    • Kelly NA, Gibson TL, Ouwerkerk DB. 2008. A solar-powered, high-efficiency hydrogen fueling system using high-pressure electrolysis of water: design and initial results. Int. J. Hydrogen Energy 33(11):2747-64
    • (2008) Int. J. Hydrogen Energy , vol.33 , Issue.11 , pp. 2747-2764
    • Kelly, N.A.1    Gibson, T.L.2    Ouwerkerk, D.B.3
  • 90
    • 0026836820 scopus 로고
    • Test results of the hysolar 10 kW PV-electrolysis facility
    • Brinner A, Bussmann H, Hug W, Seeger W. 1992. Test results of the hysolar 10 kW PV-electrolysis facility. Int. J. Hydrogen Energy 17(3):187-97
    • (1992) Int. J. Hydrogen Energy , vol.17 , Issue.3 , pp. 187-197
    • Brinner, A.1    Bussmann, H.2    Hug, W.3    Seeger, W.4
  • 91
    • 84907588597 scopus 로고    scopus 로고
    • Ten-percent solar-to-fuel conversion with nonprecious materials
    • Cox CR, Lee JZ, Nocera DG, Buonassisi T. 2014. Ten-percent solar-to-fuel conversion with nonprecious materials. PNAS 111(39):14057-61
    • (2014) PNAS , vol.111 , Issue.39 , pp. 14057-14061
    • Cox, C.R.1    Lee, J.Z.2    Nocera, D.G.3    Buonassisi, T.4
  • 94
    • 84896916658 scopus 로고    scopus 로고
    • Two stories from the ISACS 12 conference: Solarfuel devices and catalyst identification
    • Huang Z, Xiang C, Lewerenz H-J, Lewis NS. 2014. Two stories from the ISACS 12 conference: solarfuel devices and catalyst identification. Energy Environ. Sci. 7:1207-11
    • (2014) Energy Environ. Sci. , vol.7 , pp. 1207-1211
    • Huang, Z.1    Xiang, C.2    Lewerenz, H.-J.3    Lewis, N.S.4
  • 96
    • 0022203287 scopus 로고
    • Solar photochemical process engineering for production of fuels and chemicals
    • Biddle JR, Peterson DB, FujitaT. 1985. Solar photochemical process engineering for production of fuels and chemicals. Int. J. Hydrogen Energy 10(10):633-43
    • (1985) Int. J. Hydrogen Energy , vol.10 , Issue.10 , pp. 633-643
    • Biddle, J.R.1    Peterson, D.B.2    Fujita, T.3
  • 97
    • 84882713914 scopus 로고    scopus 로고
    • Net primary energy balance of a solardriven photo-electrochemical water-splitting device
    • Zhai P, Haussener S, Ager J, Sathre R, Walczak K, et al. 2013. Net primary energy balance of a solardriven photo-electrochemical water-splitting device. Energy Environ. Sci. 6:2380-89
    • (2013) Energy Environ. Sci. , vol.6 , pp. 2380-2389
    • Zhai, P.1    Haussener, S.2    Ager, J.3    Sathre, R.4    Walczak, K.5
  • 98
    • 84877905283 scopus 로고    scopus 로고
    • Comparative environmental impact and efficiency assessment of selected hydrogen production methods
    • Ozbilen A, Dincer I, Rosen MA. 2013. Comparative environmental impact and efficiency assessment of selected hydrogen production methods. Environ. Impact Assess. Rev. 42:1-9
    • (2013) Environ. Impact Assess. Rev. , vol.42 , pp. 1-9
    • Ozbilen, A.1    Dincer, I.2    Rosen, M.A.3
  • 99
    • 84908004617 scopus 로고    scopus 로고
    • Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting
    • Sathre R, ScownCD, MorrowWRIII, Stevens JC, Sharp ID, et al. 2014. Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energy Environ. Sci. 7:3264-78
    • (2014) Energy Environ. Sci. , vol.7 , pp. 3264-3278
    • Sathre, R.1    Scown, C.D.2    Morrow, W.R.3    Stevens, J.C.4    Sharp, I.D.5
  • 103
    • 84874848568 scopus 로고    scopus 로고
    • Scanning droplet cell for high throughput electrochemical and photoelectrochemical measurements
    • Gregoire JM, Xiang C, Liu X, Marcin M, Jin J. 2013. Scanning droplet cell for high throughput electrochemical and photoelectrochemical measurements. Rev. Sci. Instrum. 84(2):024102
    • (2013) Rev. Sci. Instrum. , vol.84 , Issue.2 , pp. 024102
    • Gregoire, J.M.1    Xiang, C.2    Liu, X.3    Marcin, M.4    Jin, J.5
  • 104
    • 84875709306 scopus 로고    scopus 로고
    • Combined catalysis and optical screening for high throughput discovery of solar fuels catalysts
    • Gregoire JM,XiangC,Mitrovic S,Liu X, Marcin M, et al. 2013. Combined catalysis and optical screening for high throughput discovery of solar fuels catalysts. J. Electrochem. Soc. 160(4):F337-42
    • (2013) J. Electrochem. Soc. , vol.160 , Issue.4 , pp. F337-F342
    • Gregoire, J.M.1    Xiang, C.2    Mitrovic, S.3    Liu, X.4    Marcin, M.5
  • 105
    • 84893843282 scopus 로고    scopus 로고
    • High-throughput bubble screening method for combinatorial discovery of electrocatalysts for water splitting
    • PMID: 24372547
    • Xiang C, Suram SK, Haber JA, Guevarra DW, Soedarmadji E, et al. 2014. High-throughput bubble screening method for combinatorial discovery of electrocatalysts for water splitting. ACS Comb. Sci. 16(2):47-52. PMID: 24372547
    • (2014) ACS Comb. Sci. , vol.16 , Issue.2 , pp. 47-52
    • Xiang, C.1    Suram, S.K.2    Haber, J.A.3    Guevarra, D.W.4    Soedarmadji, E.5
  • 106
    • 84896743453 scopus 로고    scopus 로고
    • Mapping quantum yield for (Fe-Zn-Sn-Ti)Ox photoabsorbers using a high throughput photoelectrochemical screening system
    • PMID: 24471712
    • Xiang C, Haber J, Marcin M, Mitrovic S, Jin J, Gregoire JM. 2014. Mapping quantum yield for (Fe-Zn-Sn-Ti)Ox photoabsorbers using a high throughput photoelectrochemical screening system. ACS Comb. Sci. 16(3):120-27. PMID: 24471712
    • (2014) ACS Comb. Sci. , vol.16 , Issue.3 , pp. 120-127
    • Xiang, C.1    Haber, J.2    Marcin, M.3    Mitrovic, S.4    Jin, J.5    Gregoire, J.M.6
  • 107
    • 79955696615 scopus 로고    scopus 로고
    • Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays
    • Spurgeon JM,Walter MG, Zhou J,Kohl PA, Lewis NS. 2011. Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays. Energy Environ. Sci. 4:1772-80
    • (2011) Energy Environ. Sci. , vol.4 , pp. 1772-1780
    • Spurgeon, J.M.1    Walter, M.G.2    Zhou, J.3    Kohl, P.A.4    Lewis, N.S.5
  • 109
    • 82555168488 scopus 로고    scopus 로고
    • Surfactant-free, large-scale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction
    • PMID: 22050218
    • Sun J, Liu C, Yang P. 2011. Surfactant-free, large-scale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction. J. Am. Chem. Soc. 133(48):19306-9. PMID: 22050218
    • (2011) J. Am. Chem. Soc. , vol.133 , Issue.48 , pp. 19306-19309
    • Sun, J.1    Liu, C.2    Yang, P.3
  • 110
    • 84878822522 scopus 로고    scopus 로고
    • Optical, electrical, and solar energyconversion properties of gallium arsenide nanowire-array photoanodes
    • Hu S, Chi C-Y, Fountaine KT, Yao M, Atwater HA, et al. 2013. Optical, electrical, and solar energyconversion properties of gallium arsenide nanowire-array photoanodes. Energy Environ. Sci. 6:1879-90
    • (2013) Energy Environ. Sci. , vol.6 , pp. 1879-1890
    • Hu, S.1    Chi, C.-Y.2    Fountaine, K.T.3    Yao, M.4    Atwater, H.A.5
  • 112
    • 57949090117 scopus 로고    scopus 로고
    • Microfluidic fuel cells: A review
    • Kjeang E, Djilali N, Sinton D. 2009. Microfluidic fuel cells: a review. J. Power Sources 186(2):353-69
    • (2009) J. Power Sources , vol.186 , Issue.2 , pp. 353-369
    • Kjeang, E.1    Djilali, N.2    Sinton, D.3
  • 113
    • 0034619241 scopus 로고    scopus 로고
    • Photocatalytic water oxidation by Nafion-stabilized iridium oxide colloids
    • Hara M, Mallouk TE. 2000. Photocatalytic water oxidation by Nafion-stabilized iridium oxide colloids. Chem. Commun. 2000:1903-4
    • (2000) Chem. Commun. , vol.2000 , pp. 1903-1904
    • Hara, M.1    Mallouk, T.E.2
  • 114
    • 0033904515 scopus 로고    scopus 로고
    • Semiconductor-septum photoelectrochemical solar cell for hydrogen production
    • Srivastava ON, Karn RK, Misra M. 2000. Semiconductor-septum photoelectrochemical solar cell for hydrogen production. Int. J. Hydrogen Energy 25(6):495-503
    • (2000) Int. J. Hydrogen Energy , vol.25 , Issue.6 , pp. 495-503
    • Srivastava, O.N.1    Karn, R.K.2    Misra, M.3
  • 115
    • 84887891573 scopus 로고    scopus 로고
    • Modeling an integrated photoelectrolysis system sustained by water vapor
    • Xiang C, Chen Y, Lewis NS. 2013. Modeling an integrated photoelectrolysis system sustained by water vapor. Energy Environ. Sci. 6:3713-21
    • (2013) Energy Environ. Sci. , vol.6 , pp. 3713-3721
    • Xiang, C.1    Chen, Y.2    Lewis, N.S.3
  • 116
    • 79960990390 scopus 로고    scopus 로고
    • Proton exchange membrane electrolysis sustained by water vapor
    • Spurgeon JM, Lewis NS. 2011. Proton exchange membrane electrolysis sustained by water vapor. Energy Environ. Sci. 4:2993-98
    • (2011) Energy Environ. Sci. , vol.4 , pp. 2993-2998
    • Spurgeon, J.M.1    Lewis, N.S.2
  • 119
    • 84896387545 scopus 로고    scopus 로고
    • Proof of principle demonstration of a self-tracking concentrator
    • Zagolla V, Tremblay E, MoserC. 2014. Proof of principle demonstration of a self-tracking concentrator. Opt. Express 22:A498-510
    • (2014) Opt. Express , vol.22 , pp. A498-510
    • Zagolla, V.1    Tremblay, E.2    Moser, C.3
  • 120
    • 84899817897 scopus 로고    scopus 로고
    • Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation
    • Fountaine KT, Kendall CG, Atwater HA. 2014. Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation. Opt. Express 22:A930-40
    • (2014) Opt. Express , vol.22 , pp. A930-A940
    • Fountaine, K.T.1    Kendall, C.G.2    Atwater, H.A.3
  • 121
    • 84907983564 scopus 로고    scopus 로고
    • Multijunction solar cell efficiencies: Effect of spectral window, optical environment and radiative coupling
    • Eisler CN, Abrams ZR, Sheldon MT, Zhang X, Atwater HA. 2014. Multijunction solar cell efficiencies: effect of spectral window, optical environment and radiative coupling. Energy Environ. Sci. 7:3600-5
    • (2014) Energy Environ. Sci. , vol.7 , pp. 3600-3605
    • Eisler, C.N.1    Abrams, Z.R.2    Sheldon, M.T.3    Zhang, X.4    Atwater, H.A.5
  • 122
    • 84919657983 scopus 로고    scopus 로고
    • Self-tracking solar concentrator with an acceptance angle of 32?
    • Zagolla V, Dominé D, Tremblay E, Moser C. 2014. Self-tracking solar concentrator with an acceptance angle of 32?. Opt. Express 22(S7):A1880-94
    • (2014) Opt. Express , vol.22 , Issue.S7 , pp. A1880-A1894
    • Zagolla, V.1    Dominé, D.2    Tremblay, E.3    Moser, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.