-
1
-
-
36448973117
-
Powering the planet
-
Lewis NS. 2007. Powering the planet. MRS Bull. 32:808-20
-
(2007)
MRS Bull.
, vol.32
, pp. 808-820
-
-
Lewis, N.S.1
-
2
-
-
84866367282
-
Concentrating solar thermal power and thermochemical fuels
-
Romero M, Steinfeld A. 2012. Concentrating solar thermal power and thermochemical fuels. Energy Environ. Sci. 5:9234-45
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 9234-9245
-
-
Romero, M.1
Steinfeld, A.2
-
3
-
-
84882620288
-
Review of heat transfer research for solar thermochemical applications
-
Lipinski W, Davidson JH, Haussener S, Klausner JF, Mehdizadeh AM, et al. 2013. Review of heat transfer research for solar thermochemical applications. J. Thermal Sci. Eng. Appl. 5:021005
-
(2013)
J. Thermal Sci. Eng. Appl.
, vol.5
, pp. 021005
-
-
Lipinski, W.1
Davidson, J.H.2
Haussener, S.3
Klausner, J.F.4
Mehdizadeh, A.M.5
-
4
-
-
78449289476
-
Solar water splitting cells
-
Walter MG, Warren EL, McKone JR, Boettcher SW, Mi Q, et al. 2010. Solar water splitting cells. Chem. Rev. 110:6446-73
-
(2010)
Chem. Rev.
, vol.110
, pp. 6446-6473
-
-
Walter, M.G.1
Warren, E.L.2
McKone, J.R.3
Boettcher, S.W.4
Mi, Q.5
-
5
-
-
84907098621
-
Monolithic cells for solar fuels
-
Rongé J, Bosserez T, Martel D, Nervi C, Boarino L, et al. 2014. Monolithic cells for solar fuels. Chem. Soc. Rev. 43:7963-81
-
(2014)
Chem. Soc. Rev.
, vol.43
, pp. 7963-7981
-
-
Rongé, J.1
Bosserez, T.2
Martel, D.3
Nervi, C.4
Boarino, L.5
-
6
-
-
77956838396
-
Photocatalytic water splitting: Recent progress and future challenges
-
Maeda K, Domen K. 2010. Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1(18):2655-61
-
(2010)
J. Phys. Chem. Lett.
, vol.1
, Issue.18
, pp. 2655-2661
-
-
Maeda, K.1
Domen, K.2
-
7
-
-
84902144692
-
Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting
-
Hisatomi T, Kubota J, Domen K. 2014. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43:7520-35
-
(2014)
Chem. Soc. Rev.
, vol.43
, pp. 7520-7535
-
-
Hisatomi, T.1
Kubota, J.2
Domen, K.3
-
9
-
-
84860835749
-
Synthetic fuels from biomass using concentrated solar energy-A review
-
Nzihou A, FlamantG, Stanmore B. 2012. Synthetic fuels from biomass using concentrated solar energy-a review. Energy 42(1):121-31
-
(2012)
Energy
, vol.42
, Issue.1
, pp. 121-131
-
-
Nzihou, A.1
Flamant, G.2
Stanmore, B.3
-
10
-
-
79956054956
-
Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement
-
Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, et al. 2011. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332(6031):805-9
-
(2011)
Science
, vol.332
, Issue.6031
, pp. 805-809
-
-
Blankenship, R.E.1
Tiede, D.M.2
Barber, J.3
Brudvig, G.W.4
Fleming, G.5
-
11
-
-
84865120266
-
Opportunities and challenges for a sustainable energy future
-
Chu S, Majumdar A. 2012. Opportunities and challenges for a sustainable energy future. Nature 488(7411):294-303
-
(2012)
Nature
, vol.488
, Issue.7411
, pp. 294-303
-
-
Chu, S.1
Majumdar, A.2
-
12
-
-
33750458683
-
Powering the planet: Chemical challenges in solar energy utilization
-
Lewis N, Nocera D. 2006. Powering the planet: chemical challenges in solar energy utilization. PNAS 103:15729-35
-
(2006)
PNAS
, vol.103
, pp. 15729-15735
-
-
Lewis, N.1
Nocera, D.2
-
14
-
-
0033618581
-
A realizable renewable energy future
-
Turner JA. 1999. A realizable renewable energy future. Science 285(5428):687-89
-
(1999)
Science
, vol.285
, Issue.5428
, pp. 687-689
-
-
Turner, J.A.1
-
17
-
-
0032540476
-
A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting
-
Khaselev O, Turner JA. 1998. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280(5362):425-27
-
(1998)
Science
, vol.280
, Issue.5362
, pp. 425-427
-
-
Khaselev, O.1
Turner, J.A.2
-
18
-
-
0033634510
-
Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis
-
Licht S, Wang B, Mukerji S, Soga T, Umeno M, Tributsch H. 2000. Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. J. Phys. Chem. B 104(38):8920-24
-
(2000)
J. Phys. Chem. B
, vol.104
, Issue.38
, pp. 8920-8924
-
-
Licht, S.1
Wang, B.2
Mukerji, S.3
Soga, T.4
Umeno, M.5
Tributsch, H.6
-
19
-
-
35248851939
-
Solar hydrogen production by water splitting with a conversion efficiency of 18%
-
Peharz G, Dimroth F,Wittstadt U. 2007. Solar hydrogen production by water splitting with a conversion efficiency of 18%. Int. J. Hydrogen Energy 32(15):3248-52
-
(2007)
Int. J. Hydrogen Energy
, vol.32
, Issue.15
, pp. 3248-3252
-
-
Peharz, G.1
Dimroth, F.2
Wittstadt, U.3
-
20
-
-
84883008345
-
Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
-
Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z, et al. 2013. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 6:1983-2002
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 1983-2002
-
-
Pinaud, B.A.1
Benck, J.D.2
Seitz, L.C.3
Forman, A.J.4
Chen, Z.5
-
21
-
-
77956851273
-
-
Tech. Rep., Dir. Technol. Inc., Arlington, VA
-
James BD, Baum GN, Perez J, Baum KN. 2009. Technoeconomic analysis of photoelectrochemical (PEC) hydrogen production. Tech. Rep., Dir. Technol. Inc., Arlington, VA
-
(2009)
Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production
-
-
James, B.D.1
Baum, G.N.2
Perez, J.3
Baum, K.N.4
-
22
-
-
84904020078
-
-
Tech. Rep., TIAX LLC, Lexington, MA
-
Kromer M, Roth K, Takata R, Chin P. 2011. Support for cost analyses on solar-driven high temperature thermochemical water-splitting cycles. Tech. Rep., TIAX LLC, Lexington, MA
-
(2011)
Support for Cost Analyses on Solar-driven High Temperature Thermochemical Water-splitting Cycles
-
-
Kromer, M.1
Roth, K.2
Takata, R.3
Chin, P.4
-
23
-
-
84888124647
-
Pilot scale demonstration of a 100-kWth solar thermochemical plant for the thermal dissociation of ZnO
-
VillasmilW, Brkic M, WuilleminD,Meier A, Steinfeld A. 2013. Pilot scale demonstration of a 100-kWth solar thermochemical plant for the thermal dissociation of ZnO. J. Solar Energy Eng. 136(1):011017
-
(2013)
J. Solar Energy Eng.
, vol.136
, Issue.1
, pp. 011017
-
-
Villasmil, W.1
Brkic, M.2
Wuillemin, D.3
Meier, A.4
Steinfeld, A.5
-
24
-
-
84890537516
-
Robust production of purified H2 in a stable, self-regulating, and continuously operating solar fuel generator
-
Modestino MA, Walczak KA, Berger A, Evans CM, Haussener S, et al. 2014. Robust production of purified H2 in a stable, self-regulating, and continuously operating solar fuel generator. Energy Environ. Sci. 7:297-301
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 297-301
-
-
Modestino, M.A.1
Walczak, K.A.2
Berger, A.3
Evans, C.M.4
Haussener, S.5
-
25
-
-
80555150640
-
Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts
-
Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, et al. 2011. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334(6056):645-48
-
(2011)
Science
, vol.334
, Issue.6056
, pp. 645-648
-
-
Reece, S.Y.1
Hamel, J.A.2
Sung, K.3
Jarvi, T.D.4
Esswein, A.J.5
-
26
-
-
84870656447
-
Highly efficient water splitting by a dual-absorber tandem cell
-
Brillet J, Yum J-H, Cornuz M, Hisatomi T, Solarska R, et al. 2012. Highly efficient water splitting by a dual-absorber tandem cell. Nat. Photon 6(12):824-28
-
(2012)
Nat. Photon
, vol.6
, Issue.12
, pp. 824-828
-
-
Brillet, J.1
Yum, J.-H.2
Cornuz, M.3
Hisatomi, T.4
Solarska, R.5
-
27
-
-
84872917706
-
Resonant light trapping in ultrathin films for water splitting
-
Dotan H, Kfir O, Sharlin E, Blank O, Gross M, et al. 2013. Resonant light trapping in ultrathin films for water splitting. Nat. Mater. 12(2):158-64
-
(2013)
Nat. Mater.
, vol.12
, Issue.2
, pp. 158-164
-
-
Dotan, H.1
Kfir, O.2
Sharlin, E.3
Blank, O.4
Gross, M.5
-
28
-
-
84870900511
-
Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems
-
Haussener S, Xiang C, Spurgeon JM, Ardo S, Lewis NS, Weber AZ. 2012. Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems. Energy Environ. Sci. 5:9922-35
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 9922-9935
-
-
Haussener, S.1
Xiang, C.2
Spurgeon, J.M.3
Ardo, S.4
Lewis, N.S.5
Weber, A.Z.6
-
29
-
-
84887858384
-
Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems
-
Haussener S, Hu S, Xiang C,Weber AZ, Lewis N. 2013. Simulations of the irradiation and temperature dependence of the efficiency of tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6:3605-18
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 3605-3618
-
-
Haussener, S.1
Hu, S.2
Xiang, C.3
Weber, A.Z.4
Lewis, N.5
-
30
-
-
84882257972
-
An integrated, systems approach to the development of solar fuel generators
-
LewisN. 2013. An integrated, systems approach to the development of solar fuel generators. ECS Interface 22:43-50
-
(2013)
ECS Interface
, vol.22
, pp. 43-50
-
-
Lewis, N.1
-
31
-
-
84861174023
-
The artificial leaf
-
Nocera D. 2012. The artificial leaf. Acc. Chem. Res. 45:767-76
-
(2012)
Acc. Chem. Res.
, vol.45
, pp. 767-776
-
-
Nocera, D.1
-
32
-
-
4043112177
-
Sustainable hydrogen production
-
Turner JA. 2004. Sustainable hydrogen production. Science 305(5686):972-74
-
(2004)
Science
, vol.305
, Issue.5686
, pp. 972-974
-
-
Turner, J.A.1
-
33
-
-
0001877830
-
High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes
-
Rocheleau RE, Miller EL, Misra A. 1998. High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes. Energy Fuels 12(1):3-10
-
(1998)
Energy Fuels
, vol.12
, Issue.1
, pp. 3-10
-
-
Rocheleau, R.E.1
Miller, E.L.2
Misra, A.3
-
34
-
-
84887986430
-
A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency
-
Jacobsson TJ, Fjällström V, Sahlberg M, Edoff M, Edvinsson T. 2013. A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency. Energy Environ. Sci. 6:3676-83
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 3676-3683
-
-
Jacobsson, T.J.1
Fjällström, V.2
Sahlberg, M.3
Edoff, M.4
Edvinsson, T.5
-
35
-
-
84991383884
-
Highly efficient solar hydrogen generation-an integrated concept joining III-V solar cells with PEM electrolysis cells
-
Rau S, Vierrath S, Ohlmann J, Fallisch A, Lackner D, et al. 2014. Highly efficient solar hydrogen generation-an integrated concept joining III-V solar cells with PEM electrolysis cells. Energy Technol. 2(1):43-53
-
(2014)
Energy Technol.
, vol.2
, Issue.1
, pp. 43-53
-
-
Rau, S.1
Vierrath, S.2
Ohlmann, J.3
Fallisch, A.4
Lackner, D.5
-
36
-
-
84881162564
-
Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode
-
Abdi FF, Han L, Smets AHM, ZemanM, Dam B, van de Krol R. 2013. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4:2195
-
(2013)
Nat. Commun.
, vol.4
, pp. 2195
-
-
Abdi, F.F.1
Han, L.2
Smets, A.H.M.3
Zeman, M.4
Dam, B.5
Van De Krol, R.6
-
37
-
-
84902983122
-
Sustainable solar hydrogen production: From photoelectrochemical cells to PV-electrolyzers and back again
-
Jacobsson JT, Fjällström V, Edoff M, Edvinsson T. 2014. Sustainable solar hydrogen production: from photoelectrochemical cells to PV-electrolyzers and back again. Energy Environ. Sci. 7:2056-70
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 2056-2070
-
-
Jacobsson, J.T.1
Fjällström, V.2
Edoff, M.3
Edvinsson, T.4
-
39
-
-
84876462935
-
Solar-to-chemical energy conversion with photoelectrochemical tandem cells
-
Sivula K. 2013. Solar-to-chemical energy conversion with photoelectrochemical tandem cells. CHIMIA Int. J. Chem. 67(3):155-61
-
(2013)
CHIMIA Int. J. Chem.
, vol.67
, Issue.3
, pp. 155-161
-
-
Sivula, K.1
-
42
-
-
66249098551
-
Multiple scattering, radiative transfer, and weak localization in discrete random media: Unified microphysical approach
-
Mishchenko MI. 2008. Multiple scattering, radiative transfer, and weak localization in discrete random media: unified microphysical approach. Rev. Geophys. 46(2):RG2003
-
(2008)
Rev. Geophys.
, vol.46
, Issue.2
, pp. RG2003
-
-
Mishchenko, M.I.1
-
43
-
-
78751575867
-
Electromagnetic scattering by a morphologically complex object: Fundamental concepts and common misconceptions
-
Mishchenko MI,Tishkovets VP, Travis LD,Cairns B, Dlugach JM, et al. 2011. Electromagnetic scattering by a morphologically complex object: fundamental concepts and common misconceptions. J. Quant. Spectrosc. Radiat. Transf. 112(4):671-92
-
(2011)
J. Quant. Spectrosc. Radiat. Transf.
, vol.112
, Issue.4
, pp. 671-692
-
-
Mishchenko, M.I.1
Tishkovets, V.P.2
Travis, L.D.3
Cairns, B.4
Dlugach, J.M.5
-
44
-
-
0030218236
-
Physical chemistry of semiconductor-liquid interfaces
-
Nozik AJ, Memming R. 1996. Physical chemistry of semiconductor-liquid interfaces. J. Phys. Chem. 100(31):13061-78
-
(1996)
J. Phys. Chem.
, vol.100
, Issue.31
, pp. 13061-13078
-
-
Nozik, A.J.1
Memming, R.2
-
49
-
-
84938767984
-
Heat transfer modeling in integrated photoelectrochemical hydrogen generators using concentrated irradiation
-
Aug. 10-15, Kyoto, Jpn
-
Tembhurne S, Dumortier M, Haussener S. 2014. Heat transfer modeling in integrated photoelectrochemical hydrogen generators using concentrated irradiation. In Proc. 15th Int. Heat Transf. Conf., Aug. 10-15, Kyoto, Jpn.
-
(2014)
Proc. 15th Int. Heat Transf. Conf.
-
-
Tembhurne, S.1
Dumortier, M.2
Haussener, S.3
-
50
-
-
0000697223
-
Photoelectrochemical production of hydrogen: Engineering loss analysis
-
Rocheleau RE, Miller EL. 1997. Photoelectrochemical production of hydrogen: engineering loss analysis. Int. J. Hydrogen Energy 22:771-82
-
(1997)
Int. J. Hydrogen Energy
, vol.22
, pp. 771-782
-
-
Rocheleau, R.E.1
Miller, E.L.2
-
51
-
-
84875244097
-
Modeling integrated photovoltaic-electrochemical devices using steady-state equivalent circuits
-
Winkler MT, Cox CR, Nocera DG, Buonassisi T. 2013. Modeling integrated photovoltaic-electrochemical devices using steady-state equivalent circuits. PNAS 110(12):E1076-82
-
(2013)
PNAS
, vol.110
, Issue.12
, pp. E1076-E1082
-
-
Winkler, M.T.1
Cox, C.R.2
Nocera, D.G.3
Buonassisi, T.4
-
52
-
-
84883669048
-
An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems
-
Hu S, Xiang C, Haussener S, Berger AD, Lewis NS. 2013. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 6:2984-93
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 2984-2993
-
-
Hu, S.1
Xiang, C.2
Haussener, S.3
Berger, A.D.4
Lewis, N.S.5
-
53
-
-
84866841577
-
Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves
-
Surendranath Y, BediakoDK, Nocera DG. 2012. Interplay of oxygen-evolution kinetics and photovoltaic power curves on the construction of artificial leaves. PNAS 109:15617
-
(2012)
PNAS
, vol.109
, pp. 15617
-
-
Surendranath, Y.1
Bediako, D.K.2
Nocera, D.G.3
-
54
-
-
84892726351
-
Photoelectrochemistry of core-shell tandem junction n-p+-Si/n-WO3 microwire array photoelectrodes
-
ShanerMR, Fountaine KT, Ardo S, Coridan RH, Atwater HA, Lewis NS. 2014. Photoelectrochemistry of core-shell tandem junction n-p+-Si/n-WO3 microwire array photoelectrodes. Energy Environ. Sci. 7(2):779-90
-
(2014)
Energy Environ. Sci.
, vol.7
, Issue.2
, pp. 779-790
-
-
Shaner, M.R.1
Fountaine, K.T.2
Ardo, S.3
Coridan, R.H.4
Atwater, H.A.5
Lewis, N.S.6
-
55
-
-
79451474621
-
Transient phenomenological modeling of photoelectrochemical cells for water splitting-application to undoped hematite electrodes
-
AndradeL, LopesT, Aguilar RibeiroH,Mendes A. 2011. Transient phenomenological modeling of photoelectrochemical cells for water splitting-application to undoped hematite electrodes. Int. J. Hydrogen Energy 36(1):175-88
-
(2011)
Int. J. Hydrogen Energy
, vol.36
, Issue.1
, pp. 175-188
-
-
Andrade, L.1
Lopes, T.2
Aguilar Ribeiro, H.3
Mendes, A.4
-
56
-
-
84896962167
-
Material requirements for membrane separators in a watersplitting photoelectrochemical cell
-
Berger A, Segalman RA, Newman J. 2014. Material requirements for membrane separators in a watersplitting photoelectrochemical cell. Energy Environ. Sci. 7:1468-76
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 1468-1476
-
-
Berger, A.1
Segalman, R.A.2
Newman, J.3
-
57
-
-
84855846195
-
Modelling and development of photoelectrochemical reactor for H2 production
-
Carver C, Ulissi Z, Ong CK, Dennison S, Kelsall GH, Hellgardt K. 2012. Modelling and development of photoelectrochemical reactor for H2 production. Int. J. Hydrogen Energy 37(3):2911-23
-
(2012)
Int. J. Hydrogen Energy
, vol.37
, Issue.3
, pp. 2911-2923
-
-
Carver, C.1
Ulissi, Z.2
Ong, C.K.3
Dennison, S.4
Kelsall, G.H.5
Hellgardt, K.6
-
58
-
-
84904791728
-
Design of membrane-encapsulated wireless photoelectrochemical cells for hydrogen production
-
SinghMR, Stevens JC, Weber AZ. 2014. Design of membrane-encapsulated wireless photoelectrochemical cells for hydrogen production. J. Electrochem. Soc. 161(8):E3283-96
-
(2014)
J. Electrochem. Soc.
, vol.161
, Issue.8
, pp. E3283-E3296
-
-
Singh, M.R.1
Stevens, J.C.2
Weber, A.Z.3
-
59
-
-
0000658390
-
Limiting and realizable efficiencies of solar photolysis of water
-
Bolton JR, Strickler SJ, Connolly JS. 1985. Limiting and realizable efficiencies of solar photolysis of water. Nature 316(6028):495-500
-
(1985)
Nature
, vol.316
, Issue.6028
, pp. 495-500
-
-
Bolton, J.R.1
Strickler, S.J.2
Connolly, J.S.3
-
60
-
-
35348875044
-
Electrochemical photolysis of water at a semiconductor electrode
-
Fujishima A, Honda K. 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37-38
-
(1972)
Nature
, vol.238
, Issue.5358
, pp. 37-38
-
-
Fujishima, A.1
Honda, K.2
-
61
-
-
84857517594
-
Recent advances in hybrid photocatalysts for solar fuel production
-
Tran PD,Wong LH, Barber J, Loo JSC. 2012. Recent advances in hybrid photocatalysts for solar fuel production. Energy Environ. Sci. 5(3):5902-18
-
(2012)
Energy Environ. Sci.
, vol.5
, Issue.3
, pp. 5902-5918
-
-
Tran, P.D.1
Wong, L.H.2
Barber, J.3
Loo, J.S.C.4
-
62
-
-
79951513799
-
Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals
-
Chen X, Liu L, Yu PY, Mao SS. 2011. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746-50
-
(2011)
Science
, vol.331
, Issue.6018
, pp. 746-750
-
-
Chen, X.1
Liu, L.2
Yu, P.Y.3
Mao, S.S.4
-
64
-
-
34547486889
-
Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications
-
Chen X, Mao SS. 2007. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107(7):2891-959
-
(2007)
Chem. Rev.
, vol.107
, Issue.7
, pp. 2891-2959
-
-
Chen, X.1
Mao, S.S.2
-
65
-
-
84873124833
-
In rust we trustHematite-The prospective inorganic backbone for artificial photosynthesis
-
Bora DK, Braun A, Constable EC. 2013. In rust we trust. Hematite-the prospective inorganic backbone for artificial photosynthesis. Energy Environ. Sci. 6(2):407-25
-
(2013)
Energy Environ. Sci.
, vol.6
, Issue.2
, pp. 407-425
-
-
Bora, D.K.1
Braun, A.2
Constable, E.C.3
-
67
-
-
84883143705
-
Identifying champion nanostructures for solar water-splitting
-
Warren SC, Vötchovsky K, Dotan H, Leroy CM, Cornuz M, et al. 2013. Identifying champion nanostructures for solar water-splitting. Nat. Mater. 12(9):842-49
-
(2013)
Nat. Mater.
, vol.12
, Issue.9
, pp. 842-849
-
-
Warren, S.C.1
Vötchovsky, K.2
Dotan, H.3
Leroy, C.M.4
Cornuz, M.5
-
68
-
-
84961368233
-
Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting
-
Kim JY, Magesh G, Youn DH, Jang J-W, Kubota J, et al. 2013. Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci. Rep. 3:2681
-
(2013)
Sci. Rep.
, vol.3
, pp. 2681
-
-
Kim, J.Y.1
Magesh, G.2
Youn, D.H.3
Jang, J.-W.4
Kubota, J.5
-
69
-
-
84876273723
-
Electrical and photoelectrochemical properties ofWO3/Si tandem photoelectrodes
-
Coridan RH, ShanerM,Wiggenhorn C, Brunschwig BS, Lewis NS. 2013. Electrical and photoelectrochemical properties ofWO3/Si tandem photoelectrodes. J. Phys. Chem. C 117(14):6949-57
-
(2013)
J. Phys. Chem. C
, vol.117
, Issue.14
, pp. 6949-6957
-
-
Coridan, R.H.1
Shaner, M.2
Wiggenhorn, C.3
Brunschwig, B.S.4
Lewis, N.S.5
-
70
-
-
84893491355
-
Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte
-
Spurgeon JM, Velazquez JM, McDowell MT. 2014. Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte. Phys. Chem. Chem. Phys. 16(8):3623-31
-
(2014)
Phys. Chem. Chem. Phys.
, vol.16
, Issue.8
, pp. 3623-3631
-
-
Spurgeon, J.M.1
Velazquez, J.M.2
McDowell, M.T.3
-
71
-
-
80053315485
-
Solar hydrogen generation from seawater with a modified BiVO4 photoanode
-
Luo W, Yang Z, Li Z, Zhang J, Liu J, et al. 2011. Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy Environ. Sci. 4(10):4046-51
-
(2011)
Energy Environ. Sci.
, vol.4
, Issue.10
, pp. 4046-4051
-
-
Luo, W.1
Yang, Z.2
Li, Z.3
Zhang, J.4
Liu, J.5
-
72
-
-
84860523548
-
Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes
-
Abdi FF, van de Krol R. 2012. Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes. J. Phys. Chem. C 116(17):9398-404
-
(2012)
J. Phys. Chem. C
, vol.116
, Issue.17
, pp. 9398-9404
-
-
Abdi, F.F.1
Van De Krol, R.2
-
73
-
-
38849097143
-
Visible light induced photoelectrochemical properties of n-BiVO4 and n-BiVO4/p-Co3O4
-
LongMC, CaiWM, Kisch H. 2007. Visible light induced photoelectrochemical properties of n-BiVO4 and n-BiVO4/p-Co3O4. J. Phys. Chem. C 112(2):548-54
-
(2007)
J. Phys. Chem. C
, vol.112
, Issue.2
, pp. 548-554
-
-
Long, M.C.1
Cai, W.M.2
Kisch, H.3
-
74
-
-
84890832895
-
BiVO4 thin film photoanodes grown by chemical vapor deposition
-
Alarcon-Llado E, Chen L, Hettick M, Mashouf N, Lin Y, et al. 2014. BiVO4 thin film photoanodes grown by chemical vapor deposition. Phys. Chem. Chem. Phys. 16(4):1651-57
-
(2014)
Phys. Chem. Chem. Phys.
, vol.16
, Issue.4
, pp. 1651-1657
-
-
Alarcon-Llado, E.1
Chen, L.2
Hettick, M.3
Mashouf, N.4
Lin, Y.5
-
75
-
-
84890423317
-
Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition
-
Lichterman MF, Shaner MR, Handler SG, Brunschwig BS, Gray HB, et al. 2013. Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition. J. Phys. Chem. Lett. 4(23):4188-91
-
(2013)
J. Phys. Chem. Lett.
, vol.4
, Issue.23
, pp. 4188-4191
-
-
Lichterman, M.F.1
Shaner, M.R.2
Handler, S.G.3
Brunschwig, B.S.4
Gray, H.B.5
-
76
-
-
0035254142
-
High-efficiency integrated multijunction photovoltaic/ electrolysis systems for hydrogen production
-
Khaselev O, Bansal A, Turner JA. 2001. High-efficiency integrated multijunction photovoltaic/ electrolysis systems for hydrogen production. Int. J. Hydrogen Energy 26(2):127-32
-
(2001)
Int. J. Hydrogen Energy
, vol.26
, Issue.2
, pp. 127-132
-
-
Khaselev, O.1
Bansal, A.2
Turner, J.A.3
-
77
-
-
84887844198
-
Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production
-
Lin Y, Battaglia C, BoccardM,Hettick M, Yu Z, et al. 2013. Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production. Nano Lett. 13(11):5615-18
-
(2013)
Nano Lett.
, vol.13
, Issue.11
, pp. 5615-5618
-
-
Lin, Y.1
Battaglia, C.2
Boccard, M.3
Hettick, M.4
Yu, Z.5
-
78
-
-
74249091524
-
Energyconversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes
-
Boettcher SW, Spurgeon JM, Putnam MC, Warren EL, Turner-Evans DB, et al. 2010. Energyconversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes. Science 327(5962):185-87
-
(2010)
Science
, vol.327
, Issue.5962
, pp. 185-187
-
-
Boettcher, S.W.1
Spurgeon, J.M.2
Putnam, M.C.3
Warren, E.L.4
Turner-Evans, D.B.5
-
79
-
-
35348970863
-
High aspect ratio silicon wire array photoelectrochemical cells
-
Maiolo JR, Kayes BM, Filler MA, Putnam MC, Kelzenberg MD, et al. 2007. High aspect ratio silicon wire array photoelectrochemical cells. J. Am. Chem. Soc. 129(41):12346-47
-
(2007)
J. Am. Chem. Soc.
, vol.129
, Issue.41
, pp. 12346-12347
-
-
Maiolo, J.R.1
Kayes, B.M.2
Filler, M.A.3
Putnam, M.C.4
Kelzenberg, M.D.5
-
80
-
-
84864266191
-
Resistance and polarization losses in aqueous buffer-membrane electrolytes for water-splitting photoelectrochemical cells
-
Hernández-Pagan EA, Vargas-Barbosa NM, Wang TH, Zhao Y, Smotkin ES, Mallouk TE. 2012. Resistance and polarization losses in aqueous buffer-membrane electrolytes for water-splitting photoelectrochemical cells. Energy Environ. Sci. 5:7582-89
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 7582-7589
-
-
Hernández-Pagan, E.A.1
Vargas-Barbosa, N.M.2
Wang, T.H.3
Zhao, Y.4
Smotkin, E.S.5
Mallouk, T.E.6
-
81
-
-
84907578473
-
An experimental andmodeling/simulationbased evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system
-
Jin J,Walczak K, SinghMR, Karp C, LewisN,XiangC. 2014. An experimental andmodeling/simulationbased evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system. Energy Environ. Sci. 7:3371-80
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 3371-3380
-
-
Jin, J.1
Walczak, K.2
Singh, M.R.3
Karp, C.4
Lewis, N.5
Xiang, C.6
-
83
-
-
84906242019
-
Sunlight absorption in water-efficiency and design implications for photoelectrochemical devices
-
Döscher H, Geisz JF, DeutschTG, Turner JA. 2014. Sunlight absorption in water-efficiency and design implications for photoelectrochemical devices. Energy Environ. Sci. 7:2951-56
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 2951-2956
-
-
Döscher, H.1
Geisz, J.F.2
Deutsch, T.G.3
Turner, J.A.4
-
84
-
-
84901606058
-
2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation
-
2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344(6187):1005-9
-
(2014)
Science
, vol.344
, Issue.6187
, pp. 1005-1009
-
-
Hu, S.1
Shaner, M.R.2
Beardslee, J.A.3
Lichterman, M.4
Brunschwig, B.S.5
Lewis, N.S.6
-
85
-
-
84910134467
-
Design and cost considerations for practical solar-hydrogen generators
-
Rodriguez CA, Modestino MA, Psaltis D, Moser C. 2014. Design and cost considerations for practical solar-hydrogen generators. Energy Environ. Sci. 7(12):3828-35
-
(2014)
Energy Environ. Sci.
, vol.7
, Issue.12
, pp. 3828-3835
-
-
Rodriguez, C.A.1
Modestino, M.A.2
Psaltis, D.3
Moser, C.4
-
86
-
-
55049101346
-
Optimization of solar powered hydrogen production using photovoltaic electrolysis devices
-
Gibson TL, Kelly NA. 2008. Optimization of solar powered hydrogen production using photovoltaic electrolysis devices. Int. J. Hydrogen Energy 33(21):5931-40
-
(2008)
Int. J. Hydrogen Energy
, vol.33
, Issue.21
, pp. 5931-5940
-
-
Gibson, T.L.1
Kelly, N.A.2
-
87
-
-
0000879382
-
Operating experience with a photovoltaic-hydrogen energy system
-
Lehman PA, Chamberlin CE, Pauletto G, Rocheleau MA. 1997. Operating experience with a photovoltaic-hydrogen energy system. Int. J. Hydrogen Energy 22(5):465-70
-
(1997)
Int. J. Hydrogen Energy
, vol.22
, Issue.5
, pp. 465-470
-
-
Lehman, P.A.1
Chamberlin, C.E.2
Pauletto, G.3
Rocheleau, M.A.4
-
88
-
-
0038219744
-
PV autonomous installation to produce hydrogen via electrolysis, and its use in FC buses
-
Vidueira JM, Contreras A, Veziroglu TN. 2003. PV autonomous installation to produce hydrogen via electrolysis, and its use in FC buses. Int. J. Hydrogen Energy 28(9):927-37
-
(2003)
Int. J. Hydrogen Energy
, vol.28
, Issue.9
, pp. 927-937
-
-
Vidueira, J.M.1
Contreras, A.2
Veziroglu, T.N.3
-
89
-
-
44649091254
-
A solar-powered, high-efficiency hydrogen fueling system using high-pressure electrolysis of water: Design and initial results
-
Kelly NA, Gibson TL, Ouwerkerk DB. 2008. A solar-powered, high-efficiency hydrogen fueling system using high-pressure electrolysis of water: design and initial results. Int. J. Hydrogen Energy 33(11):2747-64
-
(2008)
Int. J. Hydrogen Energy
, vol.33
, Issue.11
, pp. 2747-2764
-
-
Kelly, N.A.1
Gibson, T.L.2
Ouwerkerk, D.B.3
-
90
-
-
0026836820
-
Test results of the hysolar 10 kW PV-electrolysis facility
-
Brinner A, Bussmann H, Hug W, Seeger W. 1992. Test results of the hysolar 10 kW PV-electrolysis facility. Int. J. Hydrogen Energy 17(3):187-97
-
(1992)
Int. J. Hydrogen Energy
, vol.17
, Issue.3
, pp. 187-197
-
-
Brinner, A.1
Bussmann, H.2
Hug, W.3
Seeger, W.4
-
91
-
-
84907588597
-
Ten-percent solar-to-fuel conversion with nonprecious materials
-
Cox CR, Lee JZ, Nocera DG, Buonassisi T. 2014. Ten-percent solar-to-fuel conversion with nonprecious materials. PNAS 111(39):14057-61
-
(2014)
PNAS
, vol.111
, Issue.39
, pp. 14057-14061
-
-
Cox, C.R.1
Lee, J.Z.2
Nocera, D.G.3
Buonassisi, T.4
-
92
-
-
84907428372
-
Water photolysis at 12
-
Luo J, Im JH,MayerMT,SchreierM,NazeeruddinMK, et al. 2014. Water photolysis at 12. 3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345(6204):1593-96
-
(2014)
3% Efficiency Via Perovskite Photovoltaics and Earth-abundant Catalysts. Science
, vol.345
, Issue.6204
, pp. 1593-1596
-
-
Luo, J.1
Im, J.H.2
Mayer, M.T.3
Schreier, M.4
Nazeeruddin, M.K.5
-
94
-
-
84896916658
-
Two stories from the ISACS 12 conference: Solarfuel devices and catalyst identification
-
Huang Z, Xiang C, Lewerenz H-J, Lewis NS. 2014. Two stories from the ISACS 12 conference: solarfuel devices and catalyst identification. Energy Environ. Sci. 7:1207-11
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 1207-1211
-
-
Huang, Z.1
Xiang, C.2
Lewerenz, H.-J.3
Lewis, N.S.4
-
96
-
-
0022203287
-
Solar photochemical process engineering for production of fuels and chemicals
-
Biddle JR, Peterson DB, FujitaT. 1985. Solar photochemical process engineering for production of fuels and chemicals. Int. J. Hydrogen Energy 10(10):633-43
-
(1985)
Int. J. Hydrogen Energy
, vol.10
, Issue.10
, pp. 633-643
-
-
Biddle, J.R.1
Peterson, D.B.2
Fujita, T.3
-
97
-
-
84882713914
-
Net primary energy balance of a solardriven photo-electrochemical water-splitting device
-
Zhai P, Haussener S, Ager J, Sathre R, Walczak K, et al. 2013. Net primary energy balance of a solardriven photo-electrochemical water-splitting device. Energy Environ. Sci. 6:2380-89
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 2380-2389
-
-
Zhai, P.1
Haussener, S.2
Ager, J.3
Sathre, R.4
Walczak, K.5
-
98
-
-
84877905283
-
Comparative environmental impact and efficiency assessment of selected hydrogen production methods
-
Ozbilen A, Dincer I, Rosen MA. 2013. Comparative environmental impact and efficiency assessment of selected hydrogen production methods. Environ. Impact Assess. Rev. 42:1-9
-
(2013)
Environ. Impact Assess. Rev.
, vol.42
, pp. 1-9
-
-
Ozbilen, A.1
Dincer, I.2
Rosen, M.A.3
-
99
-
-
84908004617
-
Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting
-
Sathre R, ScownCD, MorrowWRIII, Stevens JC, Sharp ID, et al. 2014. Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energy Environ. Sci. 7:3264-78
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 3264-3278
-
-
Sathre, R.1
Scown, C.D.2
Morrow, W.R.3
Stevens, J.C.4
Sharp, I.D.5
-
101
-
-
84875797891
-
-
Tech. Rep., US Dep. Energy
-
Feldman D, Barbose G, Margolis RM, Wiser R, Darghouth N, Goodrich A. 2012. Photovoltaic (PV) pricing trends: historical, recent, and near-term projections. Tech. Rep., US Dep. Energy
-
(2012)
Photovoltaic (PV) Pricing Trends: Historical, Recent, and Near-term Projections
-
-
Feldman, D.1
Barbose, G.2
Margolis, R.M.3
Wiser, R.4
Darghouth, N.5
Goodrich, A.6
-
103
-
-
84874848568
-
Scanning droplet cell for high throughput electrochemical and photoelectrochemical measurements
-
Gregoire JM, Xiang C, Liu X, Marcin M, Jin J. 2013. Scanning droplet cell for high throughput electrochemical and photoelectrochemical measurements. Rev. Sci. Instrum. 84(2):024102
-
(2013)
Rev. Sci. Instrum.
, vol.84
, Issue.2
, pp. 024102
-
-
Gregoire, J.M.1
Xiang, C.2
Liu, X.3
Marcin, M.4
Jin, J.5
-
104
-
-
84875709306
-
Combined catalysis and optical screening for high throughput discovery of solar fuels catalysts
-
Gregoire JM,XiangC,Mitrovic S,Liu X, Marcin M, et al. 2013. Combined catalysis and optical screening for high throughput discovery of solar fuels catalysts. J. Electrochem. Soc. 160(4):F337-42
-
(2013)
J. Electrochem. Soc.
, vol.160
, Issue.4
, pp. F337-F342
-
-
Gregoire, J.M.1
Xiang, C.2
Mitrovic, S.3
Liu, X.4
Marcin, M.5
-
105
-
-
84893843282
-
High-throughput bubble screening method for combinatorial discovery of electrocatalysts for water splitting
-
PMID: 24372547
-
Xiang C, Suram SK, Haber JA, Guevarra DW, Soedarmadji E, et al. 2014. High-throughput bubble screening method for combinatorial discovery of electrocatalysts for water splitting. ACS Comb. Sci. 16(2):47-52. PMID: 24372547
-
(2014)
ACS Comb. Sci.
, vol.16
, Issue.2
, pp. 47-52
-
-
Xiang, C.1
Suram, S.K.2
Haber, J.A.3
Guevarra, D.W.4
Soedarmadji, E.5
-
106
-
-
84896743453
-
Mapping quantum yield for (Fe-Zn-Sn-Ti)Ox photoabsorbers using a high throughput photoelectrochemical screening system
-
PMID: 24471712
-
Xiang C, Haber J, Marcin M, Mitrovic S, Jin J, Gregoire JM. 2014. Mapping quantum yield for (Fe-Zn-Sn-Ti)Ox photoabsorbers using a high throughput photoelectrochemical screening system. ACS Comb. Sci. 16(3):120-27. PMID: 24471712
-
(2014)
ACS Comb. Sci.
, vol.16
, Issue.3
, pp. 120-127
-
-
Xiang, C.1
Haber, J.2
Marcin, M.3
Mitrovic, S.4
Jin, J.5
Gregoire, J.M.6
-
107
-
-
79955696615
-
Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays
-
Spurgeon JM,Walter MG, Zhou J,Kohl PA, Lewis NS. 2011. Electrical conductivity, ionic conductivity, optical absorption, and gas separation properties of ionically conductive polymer membranes embedded with Si microwire arrays. Energy Environ. Sci. 4:1772-80
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 1772-1780
-
-
Spurgeon, J.M.1
Walter, M.G.2
Zhou, J.3
Kohl, P.A.4
Lewis, N.S.5
-
108
-
-
58449135554
-
Flexible polymer-embedded Si wire arrays
-
Plass KE, Filler MA, Spurgeon JM, Kayes BM, Maldonado S, et al. 2009. Flexible polymer-embedded Si wire arrays. Adv. Mater. 21(3):325-28
-
(2009)
Adv. Mater.
, vol.21
, Issue.3
, pp. 325-328
-
-
Plass, K.E.1
Filler, M.A.2
Spurgeon, J.M.3
Kayes, B.M.4
Maldonado, S.5
-
109
-
-
82555168488
-
Surfactant-free, large-scale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction
-
PMID: 22050218
-
Sun J, Liu C, Yang P. 2011. Surfactant-free, large-scale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction. J. Am. Chem. Soc. 133(48):19306-9. PMID: 22050218
-
(2011)
J. Am. Chem. Soc.
, vol.133
, Issue.48
, pp. 19306-19309
-
-
Sun, J.1
Liu, C.2
Yang, P.3
-
110
-
-
84878822522
-
Optical, electrical, and solar energyconversion properties of gallium arsenide nanowire-array photoanodes
-
Hu S, Chi C-Y, Fountaine KT, Yao M, Atwater HA, et al. 2013. Optical, electrical, and solar energyconversion properties of gallium arsenide nanowire-array photoanodes. Energy Environ. Sci. 6:1879-90
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 1879-1890
-
-
Hu, S.1
Chi, C.-Y.2
Fountaine, K.T.3
Yao, M.4
Atwater, H.A.5
-
111
-
-
84876900680
-
Integrated microfluidic test-bed for energy conversion devices
-
Modestino MA, Diaz-Botia CA, Haussener S, Gomez-Sjoberg R, Ager JW, Segalman RA. 2013. Integrated microfluidic test-bed for energy conversion devices. Phys. Chem. Chem. Phys. 15:7050-54
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, pp. 7050-7054
-
-
Modestino, M.A.1
Diaz-Botia, C.A.2
Haussener, S.3
Gomez-Sjoberg, R.4
Ager, J.W.5
Segalman, R.A.6
-
113
-
-
0034619241
-
Photocatalytic water oxidation by Nafion-stabilized iridium oxide colloids
-
Hara M, Mallouk TE. 2000. Photocatalytic water oxidation by Nafion-stabilized iridium oxide colloids. Chem. Commun. 2000:1903-4
-
(2000)
Chem. Commun.
, vol.2000
, pp. 1903-1904
-
-
Hara, M.1
Mallouk, T.E.2
-
114
-
-
0033904515
-
Semiconductor-septum photoelectrochemical solar cell for hydrogen production
-
Srivastava ON, Karn RK, Misra M. 2000. Semiconductor-septum photoelectrochemical solar cell for hydrogen production. Int. J. Hydrogen Energy 25(6):495-503
-
(2000)
Int. J. Hydrogen Energy
, vol.25
, Issue.6
, pp. 495-503
-
-
Srivastava, O.N.1
Karn, R.K.2
Misra, M.3
-
115
-
-
84887891573
-
Modeling an integrated photoelectrolysis system sustained by water vapor
-
Xiang C, Chen Y, Lewis NS. 2013. Modeling an integrated photoelectrolysis system sustained by water vapor. Energy Environ. Sci. 6:3713-21
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 3713-3721
-
-
Xiang, C.1
Chen, Y.2
Lewis, N.S.3
-
116
-
-
79960990390
-
Proton exchange membrane electrolysis sustained by water vapor
-
Spurgeon JM, Lewis NS. 2011. Proton exchange membrane electrolysis sustained by water vapor. Energy Environ. Sci. 4:2993-98
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 2993-2998
-
-
Spurgeon, J.M.1
Lewis, N.S.2
-
118
-
-
77249164255
-
Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications
-
KelzenbergMD, Boettcher SW, Petykiewicz JA, Turner-Evans DB, PutnamMC, et al. 2010. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9(3):239-44
-
(2010)
Nat. Mater.
, vol.9
, Issue.3
, pp. 239-244
-
-
Kelzenberg, M.D.1
Boettcher, S.W.2
Petykiewicz, J.A.3
Turner-Evans, D.B.4
Putnam, M.C.5
-
119
-
-
84896387545
-
Proof of principle demonstration of a self-tracking concentrator
-
Zagolla V, Tremblay E, MoserC. 2014. Proof of principle demonstration of a self-tracking concentrator. Opt. Express 22:A498-510
-
(2014)
Opt. Express
, vol.22
, pp. A498-510
-
-
Zagolla, V.1
Tremblay, E.2
Moser, C.3
-
120
-
-
84899817897
-
Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation
-
Fountaine KT, Kendall CG, Atwater HA. 2014. Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation. Opt. Express 22:A930-40
-
(2014)
Opt. Express
, vol.22
, pp. A930-A940
-
-
Fountaine, K.T.1
Kendall, C.G.2
Atwater, H.A.3
-
121
-
-
84907983564
-
Multijunction solar cell efficiencies: Effect of spectral window, optical environment and radiative coupling
-
Eisler CN, Abrams ZR, Sheldon MT, Zhang X, Atwater HA. 2014. Multijunction solar cell efficiencies: effect of spectral window, optical environment and radiative coupling. Energy Environ. Sci. 7:3600-5
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 3600-3605
-
-
Eisler, C.N.1
Abrams, Z.R.2
Sheldon, M.T.3
Zhang, X.4
Atwater, H.A.5
-
122
-
-
84919657983
-
Self-tracking solar concentrator with an acceptance angle of 32?
-
Zagolla V, Dominé D, Tremblay E, Moser C. 2014. Self-tracking solar concentrator with an acceptance angle of 32?. Opt. Express 22(S7):A1880-94
-
(2014)
Opt. Express
, vol.22
, Issue.S7
, pp. A1880-A1894
-
-
Zagolla, V.1
Dominé, D.2
Tremblay, E.3
Moser, C.4
-
123
-
-
85028523826
-
A micropillar array for sample concentration via in-plane evaporation
-
Choi J-W, Hosseini Hashemi SM, Erickson D, Psaltis D. 2014. A micropillar array for sample concentration via in-plane evaporation. Biomicrofluidics 8(4):044108
-
(2014)
Biomicrofluidics
, vol.8
, Issue.4
, pp. 044108
-
-
Choi, J.-W.1
Hosseini Hashemi, S.M.2
Erickson, D.3
Psaltis, D.4
|