메뉴 건너뛰기




Volumn , Issue , 2004, Pages 1-405

Exploratory data analysis with MATLAB®

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84938711223     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Book
Times cited : (75)

References (344)
  • 1
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modeling
    • Alter, O., P. O. Brown, and D. Botstein. 2000. “Singular value decomposition for genome-wide expression data processing and modeling,” Proceedings of the National Academy of Science, 97:10101-10106.
    • (2000) Proceedings of the National Academy of Science , vol.97 , pp. 10101-10106
    • Alter, O.1    Brown, P.O.2    Botstein, D.3
  • 4
    • 0000974551 scopus 로고
    • Plots of high-dimensional data
    • Andrews, D. F. 1972. “Plots of high-dimensional data,” Biometrics, 28:125-136.
    • (1972) Biometrics , vol.28 , pp. 125-136
    • Andrews, D.F.1
  • 5
    • 0016128052 scopus 로고
    • A robust method of multiple linear regression
    • Andrews, D. F. 1974. “A robust method of multiple linear regression,” Technometrics, 16:523-531.
    • (1974) Technometrics , vol.16 , pp. 523-531
    • Andrews, D.F.1
  • 7
    • 0002339335 scopus 로고
    • Graphs in statistical analysis
    • Anscombe, F. J. 1973. “Graphs in statistical analysis,” The American Statistician, 27:17-21.
    • (1973) The American Statistician , vol.27 , pp. 17-21
    • Anscombe, F.J.1
  • 11
  • 12
    • 0037016775 scopus 로고    scopus 로고
    • The isomap algorithm and topological stability (with rejoinder)
    • Balasubramanian, M. and E. L. Schwartz. 2002. “The isomap algorithm and topological stability (with rejoinder),” Science, 295:7.
    • (2002) Science , vol.295 , pp. 7
    • Balasubramanian, M.1    Schwartz, E.L.2
  • 13
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield, A. D. and A. E. Raftery. 1993. “Model-based Gaussian and non-Gaussian clustering,” Biometrics, 49:803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, A.D.1    Raftery, A.E.2
  • 14
    • 0024925404 scopus 로고
    • Distance measures for signal processing and pattern recognition
    • Basseville, Michele. 1989. “Distance measures for signal processing and pattern recognition,” Signal Processing, 18:349-369.
    • (1989) Signal Processing , vol.18 , pp. 349-369
    • Basseville, M.1
  • 15
  • 16
    • 70350321282 scopus 로고
    • Viewing multivariate scattered data
    • July/August
    • Becker, R. A., and W. S. Cleveland. 1991. “Viewing multivariate scattered data,” Pixel, July/August, 36-41.
    • (1991) Pixel , pp. 36-41
    • Becker, R.A.1    Cleveland, W.S.2
  • 19
    • 0013034246 scopus 로고
    • Opening the box of a boxplot
    • Benjamini, Yoav. 1988. “Opening the box of a boxplot,” The American Statistician, 42:257-262.
    • (1988) The American Statistician , vol.42 , pp. 257-262
    • Benjamini, Y.1
  • 20
    • 0039880549 scopus 로고
    • Determination of anaerobic threshold
    • Bennett, G. W. 1988. “Determination of anaerobic threshold,” Canadian Journal of Statistics, 16:307-310.
    • (1988) Canadian Journal of Statistics , vol.16 , pp. 307-310
    • Bennett, G.W.1
  • 23
    • 0029546874 scopus 로고
    • Using linear algebra for intelligent information retrieval
    • Berry, M. W., S. T. Dumais, and G. W. O’Brien. 1995. “Using linear algebra for intelligent information retrieval,” SIAM Review, 37:573-595.
    • (1995) SIAM Review , vol.37 , pp. 573-595
    • Berry, M.W.1    Dumais, S.T.2    O’Brien, G.W.3
  • 24
    • 0032624581 scopus 로고    scopus 로고
    • Matrices, vector spaces, and information retrieval
    • Berry, M. W., Z. Drmac, and E. R. Jessup. 1999. “Matrices, vector spaces, and information retrieval,” SIAM Review, 41:335-362.
    • (1999) SIAM Review , vol.41 , pp. 335-362
    • Berry, M.W.1    Drmac, Z.2    Jessup, E.R.3
  • 27
    • 0000308948 scopus 로고    scopus 로고
    • Using the classification likelihood to choose the number of clusters
    • Biernacki, C. and G. Govaert. 1997. “Using the classification likelihood to choose the number of clusters,” Computing Science and Statistics, 29(2):451-457.
    • (1997) Computing Science and Statistics , vol.29 , Issue.2 , pp. 451-457
    • Biernacki, C.1    Govaert, G.2
  • 28
    • 0033105385 scopus 로고    scopus 로고
    • An improvement of the NEC criterion for assessing the number of clusters in a mixture model
    • Biernacki, C., G. Celeux, and G. Govaert. 1999. “An improvement of the NEC criterion for assessing the number of clusters in a mixture model,” Pattern Recognition Letters, 20:267-272.
    • (1999) Pattern Recognition Letters , vol.20 , pp. 267-272
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 29
    • 85042555546 scopus 로고
    • Bayesian cluster analysis
    • Binder, D. A. 1978. “Bayesian cluster analysis,” Biometrika, 65:31-38.
    • (1978) Biometrika , vol.65 , pp. 31-38
    • Binder, D.A.1
  • 34
  • 35
    • 0344110441 scopus 로고    scopus 로고
    • Developments of the generative topographic mapping
    • Bishop, Christopher M., Markus Svensén, and Christopher K. I. Williams. 1998b. “Developments of the generative topographic mapping,” Neurocomputing, 21:203-224.
    • (1998) Neurocomputing , vol.21 , pp. 203-224
    • Bishop, C.M.1    Svensén, M.2    Williams, C.K.I.3
  • 38
    • 0003158632 scopus 로고
    • On some significance tests in cluster analysis
    • Bock, H. 1985. “On some significance tests in cluster analysis,” Journal of Classification, 2:77-108.
    • (1985) Journal of Classification , vol.2 , pp. 77-108
    • Bock, H.1
  • 40
    • 0033421955 scopus 로고    scopus 로고
    • A characterization of principal components for projection pursuit
    • Bolton, R. J. and W. J. Krzanowski. 1999. “A characterization of principal components for projection pursuit,” The American Statistician, 53:108-109.
    • (1999) The American Statistician , vol.53 , pp. 108-109
    • Bolton, R.J.1    Krzanowski, W.J.2
  • 44
    • 85072493988 scopus 로고
    • Ethanol fuel - a single-cylinder engine study of efficiency and exhaust emissions
    • Brinkman, N. D. 1981. “Ethanol fuel - a single-cylinder engine study of efficiency and exhaust emissions,” SAE Transactions, 90:1410-1424.
    • (1981) SAE Transactions , vol.90 , pp. 1410-1424
    • Brinkman, N.D.1
  • 46
    • 0007164029 scopus 로고
    • The dependence of ambient ozone on solar radiation, wind, temperature and mixing weight
    • Boston: American Meteorological Society
    • Bruntz, S. M., W. S. Cleveland, B. Kleiner, and J. L. Warner. 1974. “The dependence of ambient ozone on solar radiation, wind, temperature and mixing weight,” Symposium on Atmospheric Diffusion and Air Pollution, Boston: American Meteorological Society, 125-128.
    • (1974) Symposium on Atmospheric Diffusion and Air Pollution , pp. 125-128
    • Bruntz, S.M.1    Cleveland, W.S.2    Kleiner, B.3    Warner, J.L.4
  • 51
    • 4544345309 scopus 로고
    • The structure and dynamics of ringed galaxies, III: Surface photometry and kinematics of the ringed nonbarred spiral NGC 7531
    • Buta, R. 1987. “The structure and dynamics of ringed galaxies, III: Surface photometry and kinematics of the ringed nonbarred spiral NGC 7531,” The Astrophysical Journal Supplement Series, 64:1-37.
    • (1987) The Astrophysical Journal Supplement Series , vol.64 , pp. 1-37
    • Buta, R.1
  • 53
  • 58
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • Celeux, G. and G. Govaert. 1995. “Gaussian parsimonious clustering models,” Pattern Recognition, 28:781-793.
    • (1995) Pattern Recognition , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 59
    • 84950461591 scopus 로고
    • An alternative to factor analysis in marketing research - Part 2: Between group analysis
    • Chakrapani, T. K. and A. S. C. Ehrenberg. 1981. “An alternative to factor analysis in marketing research - Part 2: Between group analysis,” Professional Marketing Research Society Journal, 1:32-38.
    • (1981) Professional Marketing Research Society Journal , vol.1 , pp. 32-38
    • Chakrapani, T.K.1    Ehrenberg, A.S.C.2
  • 60
    • 0033476673 scopus 로고    scopus 로고
    • Computing with data: Concepts and challenges
    • Chambers, John. 1999. “Computing with data: Concepts and challenges,” The American Statistician, 53:73-84.
    • (1999) The American Statistician , vol.53 , pp. 73-84
    • Chambers, J.1
  • 65
    • 84949331034 scopus 로고
    • The use of faces to represent points in k-dimensional space graphically
    • Chernoff, Herman. 1973. “The use of faces to represent points in k-dimensional space graphically,” Journal of the American Statistical Association, 68:361-368.
    • (1973) Journal of the American Statistical Association , vol.68 , pp. 361-368
    • Chernoff, H.1
  • 67
    • 84936916896 scopus 로고
    • Robust locally weighted regression and smoothing scatterplots
    • Cleveland, W. S. 1979. “Robust locally weighted regression and smoothing scatterplots,” Journal of the American Statistical Association, 74:829-836.
    • (1979) Journal of the American Statistical Association , vol.74 , pp. 829-836
    • Cleveland, W.S.1
  • 68
    • 0006416248 scopus 로고
    • Graphical methods for data presentation: Full scale breaks, dot charts, and multibased logging
    • Cleveland, W. S. 1984. “Graphical methods for data presentation: Full scale breaks, dot charts, and multibased logging,” The American Statistician, 38:270-280.
    • (1984) The American Statistician , vol.38 , pp. 270-280
    • Cleveland, W.S.1
  • 70
    • 84947318637 scopus 로고
    • Locally weighted regression: An approach to regression analysis by local fitting
    • Cleveland, W. S. and Susan J. Devlin. 1988. “Locally weighted regression: An approach to regression analysis by local fitting,” Journal of the American Statistical Association, 83:596-610.
    • (1988) Journal of the American Statistical Association , vol.83 , pp. 596-610
    • Cleveland, W.S.1    Devlin, S.J.2
  • 71
    • 45549110576 scopus 로고
    • Regression by local fitting: Methods, properties, and computational algorithms
    • Cleveland, W. S., Susan J. Devlin, and Eric Grosse. 1988. “Regression by local fitting:Methods, properties, and computational algorithms,” Journal of Econometrics, 37:87-114.
    • (1988) Journal of Econometrics , vol.37 , pp. 87-114
    • Cleveland, W.S.1    Devlin, S.J.2    Grosse, E.3
  • 72
    • 0000090258 scopus 로고    scopus 로고
    • Smoothing by local regression: Principles and methods
    • Härdle and Schimek (eds.), Heidelberg: Phsyica-Verlag
    • Cleveland, W. S. and C. Loader. 1996. “Smoothing by local regression: Principles and methods, in Härdle and Schimek (eds.), Statistical Theory and Computational Aspects of Smoothing, Heidelberg: Phsyica-Verlag, 10-49.
    • (1996) Statistical Theory and Computational Aspects of Smoothing , pp. 10-49
    • Cleveland, W.S.1    Loader, C.2
  • 74
    • 0042908940 scopus 로고
    • Methodological developments in some applications of clustering
    • P. R. Krishnaiah (ed.), Amsterdam: North-Holland
    • Cohen, A., R. Gnanadesikan, J. R. Kettenring, and J. M. Landwehr. 1977. “Methodological developments in some applications of clustering,” in: Applications of Statistics, P. R. Krishnaiah (ed.), Amsterdam: North-Holland.
    • (1977) Applications of Statistics
    • Cohen, A.1    Gnanadesikan, R.2    Kettenring, J.R.3    Landwehr, J.M.4
  • 79
    • 3543131272 scopus 로고    scopus 로고
    • Geodesic entropic graphs for dimension and entropy estimation in manifold learning
    • Costa, Jose A. and Alfred O. Hero. 2004. “Geodesic entropic graphs for dimension and entropy estimation in manifold learning,” IEEE Transactions on Signal Processing, 52:2210-2221.
    • (2004) IEEE Transactions on Signal Processing , vol.52 , pp. 2210-2221
    • Costa, J.A.1    Hero, A.O.2
  • 80
    • 0345404393 scopus 로고    scopus 로고
    • Theoretical aspects of the SOM algorithm
    • Cottrell, M., J. C. Fort, and G. Pages. 1998. “Theoretical aspects of the SOM algorithm,” Neurocomputing, 21:119-138.
    • (1998) Neurocomputing , vol.21 , pp. 119-138
    • Cottrell, M.1    Fort, J.C.2    Pages, G.3
  • 83
    • 0001028042 scopus 로고
    • A record of the body weight and certain organ and gland weights of 3690 animals
    • Crile, G. and D. P. Quiring. 1940. “A record of the body weight and certain organ and gland weights of 3690 animals,” Ohio Journal of Science, 15:219-259.
    • (1940) Ohio Journal of Science , vol.15 , pp. 219-259
    • Crile, G.1    Quiring, D.P.2
  • 84
    • 0032337237 scopus 로고    scopus 로고
    • Detecting features in spatial point processes with clutter via model-based clustering
    • Dasgupta, A. and A. E. Raftery. 1998. “Detecting features in spatial point processes with clutter via model-based clustering,” Journal of the American Statistical Association, 93:294-302.
    • (1998) Journal of the American Statistical Association , vol.93 , pp. 294-302
    • Dasgupta, A.1    Raftery, A.E.2
  • 87
    • 0001381164 scopus 로고
    • Estimating the components of a mixture of normal distributions
    • Day, N. E. 1969. “Estimating the components of a mixture of normal distributions,” Biometrika, 56:463-474.
    • (1969) Biometrika , vol.56 , pp. 463-474
    • Day, N.E.1
  • 88
    • 0039305819 scopus 로고
    • Applications of convex analysis to multidimensional scaling
    • J. R. Barra, R. Brodeau, G. Romier & B. van Cutsem (ed.), Amsterdam, The Netherlands: North-Holland
    • de Leeuw, J. 1977. “Applications of convex analysis to multidimensional scaling,” in Recent Developments in Statistics, J. R. Barra, R. Brodeau, G. Romier & B. van Cutsem (ed.), Amsterdam, The Netherlands: North-Holland, 133-145.
    • (1977) Recent Developments in Statistics , pp. 133-145
    • de Leeuw, J.1
  • 92
    • 0002006630 scopus 로고
    • Theories of data analysis: From magical thinking through classical statistics
    • D. Hoaglin, F. Mosteller, and J. W. Tukey (eds.), New York: John Wiley and Sons
    • Diaconis, Persi. 1985. “Theories of data analysis: From magical thinking through classical statistics,” in Exploring Data Tables, Trends, and Shapes, D. Hoaglin, F. Mosteller, and J. W. Tukey (eds.), New York: John Wiley and Sons.
    • (1985) Exploring Data Tables, Trends, and Shapes
    • Diaconis, P.1
  • 93
    • 84879722107 scopus 로고
    • M and N plots
    • Department of Statistics, Stanford University
    • Diaconis, P. and J. H. Friedman. 1980. “M and N plots,” Technical Report 15, Department of Statistics, Stanford University.
    • (1980) Technical Report 15
    • Diaconis, P.1    Friedman, J.H.2
  • 94
    • 0001597702 scopus 로고
    • Breakdown properties of location estimates based on halfspace depth and projected outlyingness
    • Donoho, D. L. and M. Gasko. 1992. “Breakdown properties of location estimates based on halfspace depth and projected outlyingness,” The Annals of Statistics, 20:1803-1827.
    • (1992) The Annals of Statistics , vol.20 , pp. 1803-1827
    • Donoho, D.L.1    Gasko, M.2
  • 96
    • 0037948870 scopus 로고    scopus 로고
    • Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data
    • Donoho, D. L. and C. Grimes. 2003. “Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data,” Proceedings of the National Academy of Science, 100:5591-5596.
    • (2003) Proceedings of the National Academy of Science , vol.100 , pp. 5591-5596
    • Donoho, D.L.1    Grimes, C.2
  • 99
    • 0019280022 scopus 로고
    • Clustering methodologies in exploratory data analysis
    • New York: Academic Press
    • Dubes, R. and A. K. Jain. 1980. “Clustering methodologies in exploratory data analysis,” Advances in Computers, Vol. 19, New York: Academic Press.
    • (1980) Advances in Computers, Vol. 19
    • Dubes, R.1    Jain, A.K.2
  • 102
  • 107
    • 0012834533 scopus 로고    scopus 로고
    • Why so many clustering algorithms - A position paper
    • Estivill-Castro, Vladimir. 2002. “Why so many clustering algorithms - A position paper,” SIGKDD Explorations, 4:65-75.
    • (2002) SIGKDD Explorations , vol.4 , pp. 65-75
    • Estivill-Castro, V.1
  • 112
    • 77956982161 scopus 로고
    • A second study of the variation and correlation of the human skull, with special reference to the Naqada crania
    • Fawcett, C. D. 1901. “A second study of the variation and correlation of the human skull, with special reference to the Naqada crania,” Biometrika, 1:408-467.
    • (1901) Biometrika , vol.1 , pp. 408-467
    • Fawcett, C.D.1
  • 114
    • 0021565595 scopus 로고
    • A new method for environmental analysis of particle size distribution data from shoreline sediments
    • Fieller, N. R. J., D. D. Gilbertson, and W. Olbricht. 1984. “A new method for environmental analysis of particle size distribution data from shoreline sediments,” Nature, 311:648-651.
    • (1984) Nature , vol.311 , pp. 648-651
    • Fieller, N.R.J.1    Gilbertson, D.D.2    Olbricht, W.3
  • 115
    • 0001048389 scopus 로고
    • Graphical methods in statistics
    • Fienberg, S. 1979. “Graphical methods in statistics,” The American Statistician, 33:165-178.
    • (1979) The American Statistician , vol.33 , pp. 165-178
    • Fienberg, S.1
  • 116
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher, R. A. 1936. “The use of multiple measurements in taxonomic problems,” Annals of Eugenics, 7:179-188.
    • (1936) Annals of Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 117
    • 0025573202 scopus 로고
    • Pattern classification using projection pursuit
    • Flick, T., L. Jones, R. Priest, and C. Herman. 1990. “Pattern classification using projection pursuit,” Pattern Recognition, 23:1367-1376.
    • (1990) Pattern Recognition , vol.23 , pp. 1367-1376
    • Flick, T.1    Jones, L.2    Priest, R.3    Herman, C.4
  • 121
    • 0032131702 scopus 로고    scopus 로고
    • Algorithms for model-based Gaussian hierarchical clustering
    • Fraley, C. 1998. “Algorithms for model-based Gaussian hierarchical clustering,” SIAM Journal on Scientific Computing, 20:270-281.
    • (1998) SIAM Journal on Scientific Computing , vol.20 , pp. 270-281
    • Fraley, C.1
  • 122
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Fraley, C. and A. E. Raftery. 1998. “How many clusters? Which clustering method? Answers via model-based cluster analysis,” The Computer Journal, 41:578-588.
    • (1998) The Computer Journal , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 123
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation: MCLUST
    • Fraley, C. and A. E. Raftery. 2002. “Model-based clustering, discriminant analysis, and density estimation: MCLUST,” Journal of the American Statistical Association, 97:611-631.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 124
    • 0742306126 scopus 로고    scopus 로고
    • Enhanced software for model-based clustering, discriminant analysis, and density estimation: MCLUST
    • Fraley, C. and A. E. Raftery. 2003. “Enhanced software for model-based clustering, discriminant analysis, and density estimation: MCLUST,” Journal of Classification, 20:263-286.
    • (2003) Journal of Classification , vol.20 , pp. 263-286
    • Fraley, C.1    Raftery, A.E.2
  • 125
    • 15944406293 scopus 로고    scopus 로고
    • Incremental model-based clustering for large datasets with small clusters
    • Department of Statistics, University of Washington (to appear in Journal of Computational and Graphical Statistics)
    • Fraley, C., A. E. Raftery, and R. Wehrens. 2003. “Incremental model-based clustering for large datasets with small clusters,” Technical Report 439, Department of Statistics, University of Washington (to appear in Journal of Computational and Graphical Statistics).
    • (2003) Technical Report 439
    • Fraley, C.1    Raftery, A.E.2    Wehrens, R.3
  • 130
    • 0016102310 scopus 로고
    • A projection pursuit algorithm for exploratory data analysis
    • Friedman, J. and John Tukey. 1974. “A projection pursuit algorithm for exploratory data analysis,” IEEE Transactions on Computers, 23:881-889.
    • (1974) IEEE Transactions on Computers , vol.23 , pp. 881-889
    • Friedman, J.1    Tukey, J.2
  • 134
    • 62749100877 scopus 로고    scopus 로고
    • Nobody’s perfect
    • Friendly, Michael and Howard Wainer. 2004. “Nobody’s perfect,” Chance, 17:48-51.
    • (2004) Chance , vol.17 , pp. 48-51
    • Friendly, M.1    Wainer, H.2
  • 138
    • 0015011520 scopus 로고
    • An algorithm for finding intrinsic dimensionality of data
    • Fukunaka, K. and D. R. Olsen. 1971. “An algorithm for finding intrinsic dimensionality of data,” IEEE Transactions on Computers, 20:176-183.
    • (1971) IEEE Transactions on Computers , vol.20 , pp. 176-183
    • Fukunaka, K.1    Olsen, D.R.2
  • 142
    • 84926272958 scopus 로고
    • The philosophy of exploratory data analysis
    • Good, I. J. 1983. “The philosophy of exploratory data analysis,” Philosophy of Science, 50:283-295.
    • (1983) Philosophy of Science , vol.50 , pp. 283-295
    • Good, I.J.1
  • 143
  • 144
    • 0000071395 scopus 로고
    • Some distance properties of latent root and vector methods in multivariate analysis
    • Gower, J. C. 1966. “Some distance properties of latent root and vector methods in multivariate analysis,” Biometrika, 53:325-338.
    • (1966) Biometrika , vol.53 , pp. 325-338
    • Gower, J.C.1
  • 145
    • 33747044600 scopus 로고
    • Metric and Euclidean properties of dissimilarity coefficients
    • Gower, J. C. and Legendre, P. 1986. “Metric and Euclidean properties of dissimilarity coefficients,” Journal of Classification, 3:5-48.
    • (1986) Journal of Classification , vol.3 , pp. 5-48
    • Gower, J.C.1    Legendre, P.2
  • 149
    • 0013602888 scopus 로고
    • A general nonmetric technique for finding the smallest coordinate space for a configuration of points
    • Guttman, L. 1968. “A general nonmetric technique for finding the smallest coordinate space for a configuration of points,” Psychometrika, 33:469-506.
    • (1968) Psychometrika , vol.33 , pp. 469-506
    • Guttman, L.1
  • 154
    • 0030532266 scopus 로고    scopus 로고
    • Espaliers: A generalization of dendrograms
    • Hansen, Pierre, Brigitte Jaumard, and Bruno Simeone. 1996. “Espaliers: A generalization of dendrograms,” Journal of Classification, 13:107-127.
    • (1996) Journal of Classification , vol.13 , pp. 107-127
    • Hansen, P.1    Jaumard, B.2    Simeone, B.3
  • 157
    • 33748888529 scopus 로고
    • Statistical theory in clustering
    • Hartigan, J. A. 1985. “Statistical theory in clustering,” Journal of Classification, 2:63-76.
    • (1985) Journal of Classification , vol.2 , pp. 63-76
    • Hartigan, J.A.1
  • 159
    • 84972525897 scopus 로고
    • Local regression: Automatic kernel carpentry (with discussion)
    • Hastie, T. J. and C. Loader. 1993. “Local regression: Automatic kernel carpentry (with discussion),” Statistical Science, 8:120-143.
    • (1993) Statistical Science , vol.8 , pp. 120-143
    • Hastie, T.J.1    Loader, C.2
  • 164
    • 0003460870 scopus 로고
    • Exploratory data analysis
    • Kotz, S. and N. L. Johnson, eds., New York: John Wiley & Sons
    • Hoaglin, D. C. 1982. “Exploratory data analysis,” in Encyclopedia of Statistical Sciences, Volume 2, Kotz, S. and N. L. Johnson, eds., New York: John Wiley & Sons.
    • (1982) Encyclopedia of Statistical Sciences, Volume 2
    • Hoaglin, D.C.1
  • 166
    • 17144372148 scopus 로고
    • Checking the shape of discrete distributions
    • D. Hoaglin, F. Mosteller, J. W. Tukey, eds., New York: John Wiley & Sons
    • Hoaglin, D. C. and John Tukey. 1985. “Checking the shape of discrete distributions,” in Exploring Data Tables, Trends and Shapes, D. Hoaglin, F. Mosteller, J. W. Tukey, eds., New York: John Wiley & Sons.
    • (1985) Exploring Data Tables, Trends and Shapes
    • Hoaglin, D.C.1    Tukey, J.2
  • 168
    • 84950662523 scopus 로고
    • Adaptive robust procedures: A partial review and some suggestions for future applications and theory (with discussion)
    • Hogg, Robert. 1974. “Adaptive robust procedures: A partial review and some suggestions for future applications and theory (with discussion),” Journal of the American Statistical Association, 69:909-927.
    • (1974) Journal of the American Statistical Association , vol.69 , pp. 909-927
    • Hogg, R.1
  • 169
    • 0001033261 scopus 로고
    • Robust regression: Asymptotics, conjectures, and Monte Carlo
    • Huber, P. J. 1973. “Robust regression: Asymptotics, conjectures, and Monte Carlo,” Annals of Statistics, 1:799-821.
    • (1973) Annals of Statistics , vol.1 , pp. 799-821
    • Huber, P.J.1
  • 171
    • 0000263797 scopus 로고
    • Projection pursuit (with discussion)
    • Huber, P. J. 1985. “Projection pursuit (with discussion),” Annals of Statistics, 13:435-525.
    • (1985) Annals of Statistics , vol.13 , pp. 435-525
    • Huber, P.J.1
  • 174
    • 0022140354 scopus 로고
    • The plane with parallel coordinates
    • Inselberg, Alfred. 1985. “The plane with parallel coordinates,” The Visual Computer, 1:69-91.
    • (1985) The Visual Computer , vol.1 , pp. 69-91
    • Inselberg, A.1
  • 175
    • 0000733927 scopus 로고
    • Principal components and factor analysis: Part III - What is factor analysis?
    • Jackson, J. Edward. 1981. “Principal components and factor analysis: Part III - What is factor analysis?" Journal of Quality Technology, 13:125-130.
    • (1981) Journal of Quality Technology , vol.13 , pp. 125-130
    • Jackson, J.E.1
  • 179
    • 33846432342 scopus 로고
    • Some tests of significance, treated by the theory of probability
    • Jeffreys, H. 1935. “Some tests of significance, treated by the theory of probability,” Proceedings of the Cambridge Philosophy Society, 31:203-222.
    • (1935) Proceedings of the Cambridge Philosophy Society , vol.31 , pp. 203-222
    • Jeffreys, H.1
  • 182
    • 0000146283 scopus 로고
    • Discarding variables in a principal component analysis I: Artificial data
    • Jolliffe, I. T. 1972. “Discarding variables in a principal component analysis I: Artificial data,” Applied Statistics, 21:160-173.
    • (1972) Applied Statistics , vol.21 , pp. 160-173
    • Jolliffe, I.T.1
  • 186
    • 84976998771 scopus 로고
    • The application of electronic computers to factor analysis
    • Kaiser, H. F. 1960. “The application of electronic computers to factor analysis, Educational and Psychological Measurement, 20:141-151.
    • (1960) Educational and Psychological Measurement , vol.20 , pp. 141-151
    • Kaiser, H.F.1
  • 187
    • 0344370946 scopus 로고    scopus 로고
    • 3043 works that have been based on the self-organizing map (SOM) method developed by Kohonen
    • Helsinki University of Technology, Laboratory of Computer and Information Science
    • Kangas, J. and S. Kaski. 1998. "3043 works that have been based on the self-organizing map (SOM) method developed by Kohonen,” Technical Report A50, Helsinki University of Technology, Laboratory of Computer and Information Science.
    • (1998) Technical Report A50
    • Kangas, J.1    Kaski, S.2
  • 189
    • 0344972929 scopus 로고    scopus 로고
    • WEBSOM - Self-organizing maps of document collections
    • Kaski, S., T. Honkela, K. Lagus, and T. Kohonen. 1998. “WEBSOM - Self-organizing maps of document collections,” Neurocomputing, 21:101-117.
    • (1998) Neurocomputing , vol.21 , pp. 101-117
    • Kaski, S.1    Honkela, T.2    Lagus, K.3    Kohonen, T.4
  • 192
    • 0035966303 scopus 로고    scopus 로고
    • Extending the Kohonen self-organizing map networks for clustering analysis
    • Kiang, Melody Y. 2001. “Extending the Kohonen self-organizing map networks for clustering analysis,” Computational Statistics and Data Analysis, 38:161-180.
    • (2001) Computational Statistics and Data Analysis , vol.38 , pp. 161-180
    • Kiang, M.Y.1
  • 193
    • 0004658670 scopus 로고
    • Searching for text? Send an N-Gram!
    • May
    • Kimbrell, Roy E. 1988. “Searching for text? Send an N-Gram!,” Byte, May, 297 - 312.
    • (1988) Byte , pp. 297-312
    • Kimbrell, R.E.1
  • 194
  • 197
    • 0345404396 scopus 로고    scopus 로고
    • The self-organizing map
    • Kohonen, Tuevo. 1998. “The self-organizing map,” Neurocomputing, 21:1-6.
    • (1998) Neurocomputing , vol.21 , pp. 1-6
    • Kohonen, T.1
  • 201
    • 0041654220 scopus 로고
    • Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
    • Kruskal, Joseph B. 1964a. “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis,” Psychometrika, 29:1-27.
    • (1964) Psychometrika , vol.29 , pp. 1-27
    • Kruskal, J.B.1
  • 202
    • 24944533365 scopus 로고
    • Nonmetric multidimensional scaling: A numerical method
    • Kruskal, Joseph B. 1964b. “Nonmetric multidimensional scaling: A numerical method,” Psychometrika, 29:115-129.
    • (1964) Psychometrika , vol.29 , pp. 115-129
    • Kruskal, J.B.1
  • 204
    • 0023905024 scopus 로고
    • A criterion for determining the number of groups in a data set using sum-of-squares clustering
    • Krzanowski, W. J. and Y. T. Lai. 1988. “A criterion for determining the number of groups in a data set using sum-of-squares clustering,” Biometrics, 44:23-34.
    • (1988) Biometrics , vol.44 , pp. 23-34
    • Krzanowski, W.J.1    Lai, Y.T.2
  • 208
    • 33745941948 scopus 로고    scopus 로고
    • Maximum likelihood estimation of intrinsic dimension
    • to appear
    • Levina, Elizaveta and Peter Bickel. 2004. “Maximum likelihood estimation of intrinsic dimension,” NIPS 2004 (to appear).
    • (2004) NIPS 2004
    • Levina, E.1    Bickel, P.2
  • 209
    • 0001337027 scopus 로고
    • Projection-pursuit approach to robust dispersion matrices and principal components: Primary theory and Monte Carlo
    • Li, G. and Z. Chen. 1985. “Projection-pursuit approach to robust dispersion matrices and principal components: Primary theory and Monte Carlo,” Journal of the American Statistical Association, 80:759-766.
    • (1985) Journal of the American Statistical Association , vol.80 , pp. 759-766
    • Li, G.1    Chen, Z.2
  • 210
    • 0023480897 scopus 로고
    • A method for cluster analysis based on projections and quantile-quantile plots
    • Lindsey, J. C., A. M. Herzberg, and D. G. Watts. 1987. “A method for cluster analysis based on projections and quantile-quantile plots,” Biometrics, 43:327-341.
    • (1987) Biometrics , vol.43 , pp. 327-341
    • Lindsey, J.C.1    Herzberg, A.M.2    Watts, D.G.3
  • 211
    • 84976658532 scopus 로고
    • A computer generated aid for cluster analysis
    • Ling, R. F. 1973. “A computer generated aid for cluster analysis,” Communications of the ACM, 16:355-361.
    • (1973) Communications of the ACM , vol.16 , pp. 355-361
    • Ling, R.F.1
  • 215
    • 0029270805 scopus 로고
    • Artificial neural networks for feature extraction and multivariate data projection
    • Mao, J. and A. K. Jain. 1995. “Artificial neural networks for feature extraction and multivariate data projection,” IEEE Transaction on Neural Networks, 6:296-317.
    • (1995) IEEE Transaction on Neural Networks , vol.6 , pp. 296-317
    • Mao, J.1    Jain, A.K.2
  • 219
    • 47949119092 scopus 로고    scopus 로고
    • A text stream transformation for semantic-based clustering
    • Martinez, A. R. and Edward J. Wegman. 2002a. “A text stream transformation for semantic-based clustering,” Computing Science and Statistics, 34:184-203.
    • (2002) Computing Science and Statistics , vol.34 , pp. 184-203
    • Martinez, A.R.1    Wegman, E.J.2
  • 226
    • 0001883037 scopus 로고    scopus 로고
    • The EMMIX software for the fitting of mixtures of normal and t-components
    • McLachlan, G. J., D. Peel, K. E. Basford, and P. Adams. 1999. “The EMMIX software for the fitting of mixtures of normal and t-components,” Journal of Statistical Software, 4, http://www.jstatsoft.org/index.php?vol=4
    • (1999) Journal of Statistical Software , pp. 4
    • McLachlan, G.J.1    Peel, D.2    Basford, K.E.3    Adams, P.4
  • 228
    • 0002984579 scopus 로고
    • Review of the development of multidimensional scaling methods
    • Mead, A. 1992. “Review of the development of multidimensional scaling methods,” The Statistician, 41:27-39.
    • (1992) The Statistician , vol.41 , pp. 27-39
    • Mead, A.1
  • 229
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan, G. W. and M. C. Cooper. 1985. “An examination of procedures for determining the number of clusters in a data set,” Psychometrika, 50:159-179.
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 230
    • 0000235019 scopus 로고
    • A study of standardization of variables in cluster analysis
    • Milligan, G. W. and M. C. Cooper. 1988. “A study of standardization of variables in cluster analysis,” Journal of Classification, 5:181-204.
    • (1988) Journal of Classification , vol.5 , pp. 181-204
    • Milligan, G.W.1    Cooper, M.C.2
  • 232
    • 0000930268 scopus 로고
    • Hierarchical grouping methods and stopping rules: An evaluation
    • Mojena, R. 1977. “Hierarchical grouping methods and stopping rules: An evaluation,” Computer Journal, 20:359-363.
    • (1977) Computer Journal , vol.20 , pp. 359-363
    • Mojena, R.1
  • 235
    • 4243465365 scopus 로고
    • Non-uniqueness and inversions in cluster analysis
    • Morgan, Byron J. T. and Andrew P. G. Ray. 1995. “Non-uniqueness and inversions in cluster analysis,” Applied Statistics, 44:114-134.
    • (1995) Applied Statistics , vol.44 , pp. 114-134
    • Morgan, B.J.T.1    Ray, A.P.G.2
  • 239
    • 0021644144 scopus 로고
    • Fitting straight lines to point patterns
    • Murtagh, F. and A. E. Raftery. 1984. “Fitting straight lines to point patterns,” Pattern Recognition, 17:479-483.
    • (1984) Pattern Recognition , vol.17 , pp. 479-483
    • Murtagh, F.1    Raftery, A.E.2
  • 240
    • 4243224126 scopus 로고
    • Three-dimensional projection pursuit
    • Nason, Guy. 1995. “Three-dimensional projection pursuit,” Applied Statistics, 44:411-430.
    • (1995) Applied Statistics , vol.44 , pp. 411-430
    • Nason, G.1
  • 241
    • 0039821298 scopus 로고
    • Modern statistical analysis of ancient sand
    • University of Sheffield, Sheffield, UK
    • Olbricht, W. 1982. “Modern statistical analysis of ancient sand,” MSc Thesis, University of Sheffield, Sheffield, UK.
    • (1982) MSc Thesis
    • Olbricht, W.1
  • 242
    • 84972517864 scopus 로고
    • Discriminant Analysis and Clustering
    • Panel on Discriminant Analysis, Classification, and Clustering. 1989. “Discriminant Analysis and Clustering,” Statistical Science, 4:34-69.
    • (1989) Statistical Science , vol.4 , pp. 34-69
  • 243
    • 0000450161 scopus 로고
    • On the laws of inheritance in man. I. Inheritance of physical characters
    • Pearson, K. and A. Lee. 1903. “On the laws of inheritance in man. I. Inheritance of physical characters,” Biometrika, 2:357-462.
    • (1903) Biometrika , vol.2 , pp. 357-462
    • Pearson, K.1    Lee, A.2
  • 245
    • 84948481845 scopus 로고
    • An algorithm for suffix stripping
    • Porter, M. F. 1980. ‘An algorithm for suffix stripping,’ Program, 14:130 - 137.
    • (1980) Program , vol.14 , pp. 130-137
    • Porter, M.F.1
  • 246
    • 0029544228 scopus 로고
    • Projection pursuit exploratory data analysis
    • Posse, Christian. 1995a. “Projection pursuit exploratory data analysis,” Computational Statistics and Data Analysis, 29:669-687.
    • (1995) Computational Statistics and Data Analysis , vol.29 , pp. 669-687
    • Posse, C.1
  • 247
    • 0001906155 scopus 로고
    • Tools for two-dimensional exploratory projection pursuit
    • Posse, Christian. 1995b. “Tools for two-dimensional exploratory projection pursuit,” Journal of Computational and Graphical Statistics, 4:83-100.
    • (1995) Journal of Computational and Graphical Statistics , vol.4 , pp. 83-100
    • Posse, C.1
  • 248
    • 0035628554 scopus 로고    scopus 로고
    • Hierarchical model-based clustering for large data sets
    • Posse, Christian. 2001. “Hierarchical model-based clustering for large data sets,” Journal of Computational and Graphical Statistics,” 10:464-486.
    • (2001) Journal of Computational and Graphical Statistics , vol.10 , pp. 464-486
    • Posse, C.1
  • 249
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand, William M. 1971. “Objective criteria for the evaluation of clustering methods,” Journal of the American Statistical Association, 66:846-850.
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 250
    • 84961641949 scopus 로고
    • The Netherlands: Elsevier Science Publishers
    • Rao, C. R. 1993. Computational Statistics, The Netherlands: Elsevier Science Publishers.
    • (1993) Computational Statistics
    • Rao, C.R.1
  • 251
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • Redner, A. R. and H. F. Walker. 1984. “Mixture densities, maximum likelihood and the EM algorithm,” SIAM Review, 26:195-239.
    • (1984) SIAM Review , vol.26 , pp. 195-239
    • Redner, A.R.1    Walker, H.F.2
  • 253
    • 0001475895 scopus 로고
    • A graphical technique for determining the number of components in a mixture of normals
    • Roeder, Kathryn. 1994. “A graphical technique for determining the number of components in a mixture of normals,” Journal of the American Statistical Association, 89:487-495.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 487-495
    • Roeder, K.1
  • 255
    • 0040199423 scopus 로고    scopus 로고
    • Algorithm AS 307: Bivariate location depth
    • Rousseeuw, P. J. and I. Ruts. 1996. “Algorithm AS 307: Bivariate location depth,” Applied Statistics (JRSS-C), 45:516-526.
    • (1996) Applied Statistics (JRSS-C) , vol.45 , pp. 516-526
    • Rousseeuw, P.J.1    Ruts, I.2
  • 256
    • 0542377060 scopus 로고    scopus 로고
    • Constructing the bivariate Tukey median
    • Rousseeuw, P. J. and I. Ruts. 1998. “Constructing the bivariate Tukey median,” Statistica Sinica, 8:827-839.
    • (1998) Statistica Sinica , vol.8 , pp. 827-839
    • Rousseeuw, P.J.1    Ruts, I.2
  • 258
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, S. T. and L. K. Saul. 2000. “Nonlinear dimensionality reduction by locally linear embedding,” Science, 290:2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 260
    • 3042582646 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of nonlinear manifolds
    • University of Pennsylvania
    • Saul, L. K. and S. T. Roweis. 2002. “Think globally, fit locally: Unsupervised learning of nonlinear manifolds,” Technical Report MS CIS-02-18, University of Pennsylvania.
    • (2002) Technical Report MS CIS-02-18
    • Saul, L.K.1    Roweis, S.T.2
  • 261
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • Schena, M., Shalon, D., R. W. Davis, and P. O. Brown. 1995. “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science, 270:497-470.
    • (1995) Science , vol.270 , pp. 497-570
    • Schena, M.1    Shalon, D.2    Davis, R.W.3    Brown, P.O.4
  • 263
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. 1978. “Estimating the dimension of a model,” The Annals of Statistics, 6:461-464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 264
    • 0001340183 scopus 로고
    • Clustering methods based on likelihood ratio criteria
    • Scott, A. J. and M. J. Symons. 1971. “Clustering methods based on likelihood ratio criteria,” Biometrics, 27:387-397.
    • (1971) Biometrics , vol.27 , pp. 387-397
    • Scott, A.J.1    Symons, M.J.2
  • 268
    • 34250926052 scopus 로고
    • The analysis of proximities: Multidimensional scaling with an unknown distance function I
    • Shepard, R. N. 1962a. “The analysis of proximities: Multidimensional scaling with an unknown distance function I,” Psychometrika, 27:125-140.
    • (1962) Psychometrika , vol.27 , pp. 125-140
    • Shepard, R.N.1
  • 269
    • 34250920725 scopus 로고
    • The analysis of proximities: Multidimensional scaling with an unknown distance function II
    • Shepard, R. N. 1962b. “The analysis of proximities: Multidimensional scaling with an unknown distance function II,” Psychometrika, 27:219-246.
    • (1962) Psychometrika , vol.27 , pp. 219-246
    • Shepard, R.N.1
  • 270
    • 84976715951 scopus 로고
    • Tree visualization with tree-maps: 2-D space-filling approach
    • Shneiderman, B. 1992. “Tree visualization with tree-maps: 2-D space-filling approach,” ACM Transactions on Graphics, 11:92-99.
    • (1992) ACM Transactions on Graphics , vol.11 , pp. 92-99
    • Shneiderman, B.1
  • 271
    • 0024196297 scopus 로고
    • An overview of mapping techniques for exploratory pattern analysis
    • Sieklecki, W., K. Siedlecka, and J. Sklansky. 1988. “An overview of mapping techniques for exploratory pattern analysis,” Pattern Recognition, 21:411-429.
    • (1988) Pattern Recognition , vol.21 , pp. 411-429
    • Sieklecki, W.1    Siedlecka, K.2    Sklansky, J.3
  • 276
    • 85056411956 scopus 로고    scopus 로고
    • Model-based clustering with an adaptive mixtures smart start
    • to appear in
    • Solka, J. and W. L. Martinez. 2004. “Model-based clustering with an adaptive mixtures smart start,” to appear in Computing Science and Statistics.
    • (2004) Computing Science and Statistics.
    • Solka, J.1    Martinez, W.L.2
  • 279
    • 0000388992 scopus 로고
    • Consistent nonparametric regression
    • Stone, Charles J. 1977. “Consistent nonparametric regression,” The Annals of Statistics, 5:595-645.
    • (1977) The Annals of Statistics , vol.5 , pp. 595-645
    • Stone, C.J.1
  • 286
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum, J. B., V. de Silva, and J. C. Langford. 2000. “A global geometric framework for nonlinear dimensionality reduction,” Science, 290:2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 289
    • 0018728747 scopus 로고
    • The application of robust calibration to radioimmunoassay
    • Tiede, J. J. and M. Pagano. 1979. “The application of robust calibration to radioimmunoassay,” Biometrics, 35:567-574.
    • (1979) Biometrics , vol.35 , pp. 567-574
    • Tiede, J.J.1    Pagano, M.2
  • 290
    • 0039821306 scopus 로고
    • Study of sediment in mesolithic middens on Oronsay
    • University of Sheffield, Sheffield, UK
    • Timmins, D. A. Y. 1981. “Study of sediment in mesolithic middens on Oronsay,” MA Thesis, University of Sheffield, Sheffield, UK.
    • (1981) MA Thesis
    • Timmins, D.A.Y.1
  • 291
    • 0001105923 scopus 로고
    • Common structure of smoothing techniques in statistics
    • Titterington, D. B. 1985. “Common structure of smoothing techniques in statistics,” International Statistical Review, 53:141-170.
    • (1985) International Statistical Review , vol.53 , pp. 141-170
    • Titterington, D.B.1
  • 293
    • 84950351930 scopus 로고
    • Multidimensional scaling: 1. Theory and method
    • Torgerson, W. S. 1952. “Multidimensional scaling: 1. Theory and method,” Psychometrika, 17:401-419.
    • (1952) Psychometrika , vol.17 , pp. 401-419
    • Torgerson, W.S.1
  • 294
    • 0346013496 scopus 로고
    • Statistical estimation of the intrinsic dimensionality of data collections
    • Trunk, G. 1968. “Statistical estimation of the intrinsic dimensionality of data collections,” Inform. Control, 12:508-525.
    • (1968) Inform. Control , vol.12 , pp. 508-525
    • Trunk, G.1
  • 295
    • 0016917031 scopus 로고
    • Statistical estimation of the intrinsic dimensionality of data
    • Trunk, G. 1976. “Statistical estimation of the intrinsic dimensionality of data,” IEEE Transactions on Computers, 25:165-171.
    • (1976) IEEE Transactions on Computers , vol.25 , pp. 165-171
    • Trunk, G.1
  • 298
  • 299
    • 0041719300 scopus 로고
    • Technical Report 45, Series 2, Department of Statistics, Princeton University
    • Tukey, John W. 1973. “Some thoughts on alternagraphic displays,” Technical Report 45, Series 2, Department of Statistics, Princeton University.
    • (1973) Some thoughts on alternagraphic displays
    • Tukey, J.W.1
  • 302
    • 0001793787 scopus 로고
    • We need both exploratory and confirmatory
    • Tukey, John W. 1980. “We need both exploratory and confirmatory,” The American Statistician, 34:23-25.
    • (1980) The American Statistician , vol.34 , pp. 23-25
    • Tukey, J.W.1
  • 304
    • 11244280779 scopus 로고    scopus 로고
    • An adjusted boxplot for skewed distributions
    • Vandervieren, E. and M. Hubert. 2004. “An adjusted boxplot for skewed distributions,” COMPSTAT 2004, 1933-1940.
    • (2004) COMPSTAT 2004 , pp. 1933-1940
    • Vandervieren, E.1    Hubert, M.2
  • 305
    • 84951394515 scopus 로고
    • Component analysis versus common factor analysis: Some issues on selecting an appropriate procedure (with discussion)
    • Velicer, W. F., and D. N. Jackson. 1990. “Component analysis versus common factor analysis: Some issues on selecting an appropriate procedure (with discussion),” Journal of Multivariate Behavioral Research, 25:1-114.
    • (1990) Journal of Multivariate Behavioral Research , vol.25 , pp. 1-114
    • Velicer, W.F.1    Jackson, D.N.2
  • 308
    • 0003410789 scopus 로고    scopus 로고
    • Data mining techniques based on the self-organizing map
    • Helsinki University of Technology
    • Vesanto, Juha. 1997. “Data mining techniques based on the self-organizing map,” Master’s Thesis, Helsinki University of Technology.
    • (1997) Master’s Thesis
    • Vesanto, J.1
  • 309
    • 38049168357 scopus 로고    scopus 로고
    • SOM-based data visualization methods
    • Vesanto, Juha. 1999. “SOM-based data visualization methods,” Intelligent Data Analysis, 3:111-126.
    • (1999) Intelligent Data Analysis , vol.3 , pp. 111-126
    • Vesanto, J.1
  • 312
    • 0034949475 scopus 로고    scopus 로고
    • SVDMAN - singular value decomposition analysis of microarray data
    • Wall, M. E., P. A. Dyck, and T. S. Brettin. 2001. “SVDMAN - singular value decomposition analysis of microarray data,” Bioinformatics, 17:566-568.
    • (2001) Bioinformatics , vol.17 , pp. 566-568
    • Wall, M.E.1    Dyck, P.A.2    Brettin, T.S.3
  • 313
    • 2542430932 scopus 로고    scopus 로고
    • Chapter 5: Singular value decomposition and principal component analysis
    • D. P. Berar, W. Dubitsky, M. Granzow, eds., Kluwer:Norwell, MA
    • Wall, M. E., A. Rechtsteiner, and L. M. Rocha. 2003. “Chapter 5: Singular value decomposition and principal component analysis,” in A Practical Approach to Microarray Data Analysis, D. P. Berar, W. Dubitsky, M. Granzow, eds., Kluwer:Norwell, MA.
    • (2003) A Practical Approach to Microarray Data Analysis
    • Wall, M.E.1    Rechtsteiner, A.2    Rocha, L.M.3
  • 315
    • 84944178665 scopus 로고
    • Hierarchical groupings to optimize an objective function
    • Ward, J. H. 1963. “Hierarchical groupings to optimize an objective function,” Journal of the American Statistical Association, 58:236-244.
    • (1963) Journal of the American Statistical Association , vol.58 , pp. 236-244
    • Ward, J.H.1
  • 318
    • 0039365158 scopus 로고
    • Computational statistics: A new agenda for statistical theory and practice
    • Wegman, E. 1988. “Computational statistics: A new agenda for statistical theory and practice,” Journal of the Washington Academy of Sciences, 78:310-322.
    • (1988) Journal of the Washington Academy of Sciences , vol.78 , pp. 310-322
    • Wegman, E.1
  • 319
    • 84950434348 scopus 로고
    • Hyperdimensional data analysis using parallel coordinates
    • Wegman, E. J. 1990. “Hyperdimensional data analysis using parallel coordinates,” Journal of the American Statistical Association, 85:664-675.
    • (1990) Journal of the American Statistical Association , vol.85 , pp. 664-675
    • Wegman, E.J.1
  • 321
    • 0037687879 scopus 로고    scopus 로고
    • Visual data mining
    • Wegman, E. J. 2003. “Visual data mining,” Statistics in Medicine, 22:1383-1397.
    • (2003) Statistics in Medicine , vol.22 , pp. 1383-1397
    • Wegman, E.J.1
  • 322
    • 70350304278 scopus 로고
    • Statistical graphics and visualization
    • C. R. Rao, ed., The Netherlands: Elsevier Science Publishers
    • Wegman, E. J. and D. Carr. 1993. “Statistical graphics and visualization,” in Handbook of Statistics, Vol 9, C. R. Rao, ed., The Netherlands: Elsevier Science Publishers, 857-958.
    • (1993) Handbook of Statistics, Vol 9 , pp. 857-958
    • Wegman, E.J.1    Carr, D.2
  • 323
    • 0001019994 scopus 로고    scopus 로고
    • High dimensional clustering using parallel coordinates and the grand tour
    • Wegman, E. J. and Q. Luo. 1997. “High dimensional clustering using parallel coordinates and the grand tour,” Computing Science and Statistics, 28:361-368.
    • (1997) Computing Science and Statistics , vol.28 , pp. 361-368
    • Wegman, E.J.1    Luo, Q.2
  • 325
    • 0038601782 scopus 로고    scopus 로고
    • On some mathematics for visualizing high dimensional data
    • Wegman, E. J. and J. Solka. 2002. “On some mathematics for visualizing high dimensional data,” Sankkya: The Indian Journal of Statistics, 64:429-452.
    • (2002) Sankkya: The Indian Journal of Statistics , vol.64 , pp. 429-452
    • Wegman, E.J.1    Solka, J.2
  • 327
    • 2342542677 scopus 로고
    • Visualizing multivariate data
    • C. R. Rao, ed., The Netherlands: Elsevier Science Publishers
    • Wegman, E. J., D. Carr, and Q. Luo. 1993. “Visualizing multivariate data,” in Multivariate Analysis: Future Directions, C. R. Rao, ed., The Netherlands: Elsevier Science Publishers, 423-466.
    • (1993) Multivariate Analysis: Future Directions , pp. 423-466
    • Wegman, E.J.1    Carr, D.2    Luo, Q.3
  • 328
    • 0742317533 scopus 로고    scopus 로고
    • Model-based clustering for image segmentation and large datasets via sampling
    • Department of Statistics, University of Washington (to appear in Journal of Classification)
    • Wehrens, R., L. M. C. Buydens, C. Fraley, and A. E. Raftery. 2003. “Model-based clustering for image segmentation and large datasets via sampling,” Technical Report 424, Department of Statistics, University of Washington (to appear in Journal of Classification).
    • (2003) Technical Report 424
    • Wehrens, R.1    Buydens, L.M.C.2    Fraley, C.3    Raftery, A.E.4
  • 329
    • 0000109436 scopus 로고
    • Multivariate exploratory data analysis and graphics: A tutorial
    • Weihs, C. 1993. “Multivariate exploratory data analysis and graphics: A tutorial,” Journal of Chemometrics, 7:305-340.
    • (1993) Journal of Chemometrics , vol.7 , pp. 305-340
    • Weihs, C.1
  • 330
    • 84972492619 scopus 로고
    • OMEGA (Online multivariate exploratory graphical analysis): Routine searching for structure
    • Weihs, C. and H. Schmidli. 1990. “OMEGA (Online multivariate exploratory graphical analysis): Routine searching for structure,” Statistical Science, 5:175-226.
    • (1990) Statistical Science , vol.5 , pp. 175-226
    • Weihs, C.1    Schmidli, H.2
  • 333
    • 0033425177 scopus 로고    scopus 로고
    • Visual clustering and classification: The Oronsay particle size data set revisited
    • Wilhelm, A. F. X., E. J. Wegman, and J. Symanzik. 1999. “Visual clustering and classification: The Oronsay particle size data set revisited,” Computational Statistics, 14:109-146.
    • (1999) Computational Statistics , vol.14 , pp. 109-146
    • Wilhelm, A.F.X.1    Wegman, E.J.2    Symanzik, J.3
  • 334
    • 0014254846 scopus 로고
    • Probability plotting methods for the analysis of data
    • Wilk, M. B. and R. Gnanadesikan. 1968. “Probability plotting methods for the analysis of data,” Biometrika, 55:1-17.
    • (1968) Biometrika , vol.55 , pp. 1-17
    • Wilk, M.B.1    Gnanadesikan, R.2
  • 338
    • 0012393308 scopus 로고
    • Pattern clustering by multivariate mixture analysis
    • Wolfe, J. H. 1970. “Pattern clustering by multivariate mixture analysis,” Multivariate Behavioral Research, 5:329-350.
    • (1970) Multivariate Behavioral Research , vol.5 , pp. 329-350
    • Wolfe, J.H.1
  • 339
    • 0034800371 scopus 로고    scopus 로고
    • Principal component analysis for clustering gene expression data
    • Yeung, K. Y. and W. L. Ruzzo. 2001. “Principal component analysis for clustering gene expression data,” Bioinformatics, 17:363-774
    • (2001) Bioinformatics , vol.17 , pp. 363-774
    • Yeung, K.Y.1    Ruzzo, W.L.2
  • 340
    • 0003001352 scopus 로고    scopus 로고
    • Model-based clustering and data transformation for gene expression data
    • Department of Statistics, University of Washington
    • Yeung, K. Y., C. Fraley, A. Murua, A. E. Raftery, and W. L. Ruzzo. 2001. “Model-based clustering and data transformation for gene expression data,” Technical Report 396, Department of Statistics, University of Washington.
    • (2001) Technical Report 396
    • Yeung, K.Y.1    Fraley, C.2    Murua, A.3    Raftery, A.E.4    Ruzzo, W.L.5
  • 341
    • 0038248419 scopus 로고
    • Multidimensional scaling
    • Kotz, S. and Johnson, N. K. (eds.)
    • Young, Forrest W. 1985. “Multidimensional scaling,” in Encyclopedia of Statistical Sciences, Kotz, S. and Johnson, N. K. (eds.), 649-659.
    • (1985) Encyclopedia of Statistical Sciences , pp. 649-659
    • Young, F.W.1
  • 342
    • 0025790784 scopus 로고
    • Visualizing structure in high-dimensional multivariate data
    • Young, F. W., and Penny Rheingans. 1991. “Visualizing structure in high-dimensional multivariate data,” IBM Journal of Research and Development, 35:97-107.
    • (1991) IBM Journal of Research and Development , vol.35 , pp. 97-107
    • Young, F.W.1    Rheingans, P.2
  • 343
    • 0040060585 scopus 로고
    • Multivariate statistical visualization
    • C. R. Rao, ed., The Netherlands:Elsevier Science Publishers
    • Young, F. W., R. A. Faldowski, and M. M. McFarlane. 1993. “Multivariate statistical visualization,” in Handbook of Statistics, Vol 9, C. R. Rao, ed., The Netherlands:Elsevier Science Publishers, 959-998.
    • (1993) Handbook of Statistics, Vol 9 , pp. 959-998
    • Young, F.W.1    Faldowski, R.A.2    McFarlane, M.M.3
  • 344
    • 0002361037 scopus 로고
    • Discussion of a set of points in terms of their mutual distances
    • Young, G. and A. S. Householder. 1938. “Discussion of a set of points in terms of their mutual distances,” Psychometrika, 3:19-22.
    • (1938) Psychometrika , vol.3 , pp. 19-22
    • Young, G.1    Householder, A.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.