메뉴 건너뛰기




Volumn 7, Issue 8, 2015, Pages 940-951

Dynamic metabolic models in context: biomass backtracking

Author keywords

[No Author keywords available]

Indexed keywords

ACCURACY; ARTICLE; BASIC RESEARCH; BIOMASS; DRUG DEVELOPMENT; DYNAMICS; GENOME; INFORMATION; METABOLISM; NONHUMAN; PRIORITY JOURNAL; STOICHIOMETRY; ALGORITHM; ANIMAL; BIOLOGICAL MODEL; CHROMOSOMAL MAPPING; COMPUTER SIMULATION; HUMAN; PHYSIOLOGY; PROCEDURES; SIGNAL TRANSDUCTION; WORKFLOW;

EID: 84938697313     PISSN: 17579694     EISSN: 17579708     Source Type: Journal    
DOI: 10.1039/c5ib00050e     Document Type: Article
Times cited : (4)

References (54)
  • 1
    • 84905400331 scopus 로고    scopus 로고
    • An integrative, multi-scale, genome-wide model reveals the phenotypic landscape of Escherichia coli
    • J. Carrera et al., An integrative, multi-scale, genome-wide model reveals the phenotypic landscape of Escherichia coli Mol. Syst. Biol. 2014 10 735
    • (2014) Mol. Syst. Biol. , vol.10 , pp. 735
    • Carrera, J.1
  • 2
    • 84876590179 scopus 로고    scopus 로고
    • Dissecting the energy metabolism in Mycoplasma pneumoniae through genome-scale metabolic modeling
    • J. A. H. Wodke et al., Dissecting the energy metabolism in Mycoplasma pneumoniae through genome-scale metabolic modeling Mol. Syst. Biol. 2013 9 653
    • (2013) Mol. Syst. Biol. , vol.9 , pp. 653
    • Wodke, J.A.H.1
  • 3
    • 84879517894 scopus 로고    scopus 로고
    • Quantitative Analysis of Glycerol Accumulation, Glycolysis and Growth under Hyper Osmotic Stress
    • E. Petelenz-Kurdziel et al., Quantitative Analysis of Glycerol Accumulation, Glycolysis and Growth under Hyper Osmotic Stress PLoS Comput. Biol. 2013 9 e1003084
    • (2013) PLoS Comput. Biol. , vol.9
    • Petelenz-Kurdziel, E.1
  • 4
    • 12444279265 scopus 로고
    • On the Origin of Cancer Cells
    • O. Warburg On the Origin of Cancer Cells Science 1956 123 309 314
    • (1956) Science , vol.123 , pp. 309-314
    • Warburg, O.1
  • 5
    • 78649716727 scopus 로고    scopus 로고
    • Manufacturing molecules through metabolic engineering
    • J. Keasling Manufacturing molecules through metabolic engineering Science 2010 330 1355 1358
    • (2010) Science , vol.330 , pp. 1355-1358
    • Keasling, J.1
  • 7
    • 84897627707 scopus 로고    scopus 로고
    • Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells
    • J. H. Van Heerden et al., Lost in transition: start-up of glycolysis yields subpopulations of nongrowing cells Science 2014 343 1245114
    • (2014) Science , vol.343 , pp. 1245114
    • Van Heerden, J.H.1
  • 8
    • 0035846723 scopus 로고    scopus 로고
    • Full-scale model of glycolysis in Saccharomyces cerevisiae
    • F. Hynne S. Danø P. G. Sørensen Full-scale model of glycolysis in Saccharomyces cerevisiae Biophys. Chem. 2001 94 121 163
    • (2001) Biophys. Chem. , vol.94 , pp. 121-163
    • Hynne, F.1    Danø, S.2    Sørensen, P.G.3
  • 10
    • 0033857139 scopus 로고    scopus 로고
    • Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry
    • B. Teusink et al., Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry Eur. J. Biochem. 2000 267 5313 5329
    • (2000) Eur. J. Biochem. , vol.267 , pp. 5313-5329
    • Teusink, B.1
  • 12
    • 33748605597 scopus 로고    scopus 로고
    • Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug targets
    • V. K. Singh I. Ghosh Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug targets Theor. Biol. Med. Modell. 2006 3 27
    • (2006) Theor. Biol. Med. Modell. , vol.3 , pp. 27
    • Singh, V.K.1    Ghosh, I.2
  • 13
    • 44349165122 scopus 로고    scopus 로고
    • A mathematical model of glutathione metabolism
    • M. C. Reed et al., A mathematical model of glutathione metabolism Theor. Biol. Med. Modell. 2008 5 8
    • (2008) Theor. Biol. Med. Modell. , vol.5 , pp. 8
    • Reed, M.C.1
  • 17
    • 84892788440 scopus 로고    scopus 로고
    • Constraint-based models predict metabolic and associated cellular functions
    • A. Bordbar J. M. Monk Z. A. King B. O. Palsson Constraint-based models predict metabolic and associated cellular functions Nat. Rev. Genet. 2014 15 107 120
    • (2014) Nat. Rev. Genet. , vol.15 , pp. 107-120
    • Bordbar, A.1    Monk, J.M.2    King, Z.A.3    Palsson, B.O.4
  • 18
    • 0036708443 scopus 로고    scopus 로고
    • Dynamic flux balance analysis of diauxic growth in Escherichia coli
    • R. Mahadevan J. S. Edwards F. J. Doyle Dynamic flux balance analysis of diauxic growth in Escherichia coli Biophys. J. 2002 83 1331 1340
    • (2002) Biophys. J. , vol.83 , pp. 1331-1340
    • Mahadevan, R.1    Edwards, J.S.2    Doyle, F.J.3
  • 19
    • 84918789208 scopus 로고    scopus 로고
    • MetDFBA: incorporating time-resolved metabolomics measurements into dynamic flux balance analysis
    • A. M. Willemsen et al., MetDFBA: incorporating time-resolved metabolomics measurements into dynamic flux balance analysis Mol. BioSyst. 2014 11 137 145
    • (2014) Mol. BioSyst. , vol.11 , pp. 137-145
    • Willemsen, A.M.1
  • 20
    • 84895756673 scopus 로고    scopus 로고
    • k-OptForce: integrating kinetics with flux balance analysis for strain design
    • A. Chowdhury R. A. Zomorrodi D. C. Maranas k-OptForce: integrating kinetics with flux balance analysis for strain design PLoS Comput. Biol. 2014 10 e1003487
    • (2014) PLoS Comput. Biol. , vol.10
    • Chowdhury, A.1    Zomorrodi, R.A.2    Maranas, D.C.3
  • 21
    • 84893707475 scopus 로고    scopus 로고
    • Systematic reconstruction of kinetic models from genome-scale metabolic networks
    • N. J. Stanford et al., Systematic reconstruction of kinetic models from genome-scale metabolic networks PLoS One 2013 8 e79195
    • (2013) PLoS One , vol.8
    • Stanford, N.J.1
  • 22
    • 84865978199 scopus 로고    scopus 로고
    • Dynamic flux balance analysis of the metabolism of Saccharomyces cerevisiae during the shift from fully respirative or respirofermentative metabolic states to anaerobiosis
    • P. Jouhten M. Wiebe M. Penttilä Dynamic flux balance analysis of the metabolism of Saccharomyces cerevisiae during the shift from fully respirative or respirofermentative metabolic states to anaerobiosis FEBS J. 2012 279 3338 3354
    • (2012) FEBS J. , vol.279 , pp. 3338-3354
    • Jouhten, P.1    Wiebe, M.2    Penttilä, M.3
  • 23
    • 84883221825 scopus 로고    scopus 로고
    • BioModels Database: A Repository of Mathematical Models of Biological Processes
    • V. Chelliah C. Laibe N. Le Novère BioModels Database: A Repository of Mathematical Models of Biological Processes Methods Mol. Biol. 2013 1021 189 199
    • (2013) Methods Mol. Biol. , vol.1021 , pp. 189-199
    • Chelliah, V.1    Laibe, C.2    Le Novère, N.3
  • 24
    • 0037342537 scopus 로고    scopus 로고
    • The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models
    • M. Hucka et al., The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models Bioinformatics 2003 19 524 531
    • (2003) Bioinformatics , vol.19 , pp. 524-531
    • Hucka, M.1
  • 25
    • 34347258175 scopus 로고    scopus 로고
    • Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox
    • S. A. Becker et al., Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox Nat. Protoc. 2007 2 727 738
    • (2007) Nat. Protoc. , vol.2 , pp. 727-738
    • Becker, S.A.1
  • 27
    • 84876560358 scopus 로고    scopus 로고
    • The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013
    • J. Hastings et al., The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013 Nucleic Acids Res. 2013 41 D456 63
    • (2013) Nucleic Acids Res. , vol.41 , pp. D456-D463
    • Hastings, J.1
  • 28
    • 0032919364 scopus 로고    scopus 로고
    • KEGG: Kyoto Encyclopedia of Genes and Genomes
    • H. Ogata et al., KEGG: Kyoto Encyclopedia of Genes and Genomes Nucleic Acids Res. 1999 27 29 34
    • (1999) Nucleic Acids Res. , vol.27 , pp. 29-34
    • Ogata, H.1
  • 29
    • 0037079023 scopus 로고    scopus 로고
    • Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth
    • U. R. Ibarra S. J. Edwards O. B. Palsson Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth Nature 2002 420 186 189
    • (2002) Nature , vol.420 , pp. 186-189
    • Ibarra, U.R.1    Edwards, S.J.2    Palsson, O.B.3
  • 31
    • 77955141026 scopus 로고    scopus 로고
    • Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models
    • E. N. Lewis et al., Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models Mol. Syst. Biol. 2010 6 390
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 390
    • Lewis, E.N.1
  • 32
    • 1642457253 scopus 로고    scopus 로고
    • The effects of alternate optimal solutions in constraint-based genome-scale metabolic models
    • R. Mahadevan H. C. Schilling The effects of alternate optimal solutions in constraint-based genome-scale metabolic models Metab. Eng. 2003 5 264 276
    • (2003) Metab. Eng. , vol.5 , pp. 264-276
    • Mahadevan, R.1    Schilling, H.C.2
  • 33
    • 84881540727 scopus 로고    scopus 로고
    • Revising the Representation of Fatty Acid, Glycerolipid, and Glycerophospholipid Metabolism in the Consensus Model of Yeast Metabolism
    • W. H. Aung S. A. Henry P. L. Walker Revising the Representation of Fatty Acid, Glycerolipid, and Glycerophospholipid Metabolism in the Consensus Model of Yeast Metabolism Ind. Biotechnol. 2013 9 215 228
    • (2013) Ind. Biotechnol. , vol.9 , pp. 215-228
    • Aung, W.H.1    Henry, S.A.2    Walker, P.L.3
  • 35
    • 84861131751 scopus 로고    scopus 로고
    • Testing biochemistry revisited: how in vivo metabolism can be understood from in vitro enzyme kinetics
    • K. Van Eunen J. A. Kiewiet H. V. Westerhoff B. M. Bakker Testing biochemistry revisited: how in vivo metabolism can be understood from in vitro enzyme kinetics PLoS Comput. Biol. 2012 8 e1002483
    • (2012) PLoS Comput. Biol. , vol.8
    • Van Eunen, K.1    Kiewiet, J.A.2    Westerhoff, H.V.3    Bakker, B.M.4
  • 36
    • 80054069179 scopus 로고    scopus 로고
    • A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011
    • D. J. Orth et al., A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011 Mol. Syst. Biol. 2011 7 535
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 535
    • Orth, D.J.1
  • 37
    • 33845368513 scopus 로고    scopus 로고
    • COPASI-a COmplex PAthway SImulator
    • S. Hoops et al., COPASI-a COmplex PAthway SImulator Bioinformatics 2006 22 3067 3074
    • (2006) Bioinformatics , vol.22 , pp. 3067-3074
    • Hoops, S.1
  • 38
    • 49549104162 scopus 로고    scopus 로고
    • Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A
    • P. Jouhten et al., Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A BMC Syst. Biol. 2008 2 60
    • (2008) BMC Syst. Biol. , vol.2 , pp. 60
    • Jouhten, P.1
  • 39
    • 78650900723 scopus 로고    scopus 로고
    • The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli
    • T. C. Archer et al., The genome sequence of E. coli W (ATCC 9637): comparative genome analysis and an improved genome-scale reconstruction of E. coli BMC Genomics 2011 12 9
    • (2011) BMC Genomics , vol.12 , pp. 9
    • Archer, T.C.1
  • 40
    • 34447317247 scopus 로고    scopus 로고
    • Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets
    • N. Jamshidi B. Ø. Palsson Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets BMC Syst. Biol. 2007 1 26
    • (2007) BMC Syst. Biol. , vol.1 , pp. 26
    • Jamshidi, N.1    Palsson, B.Ø.2
  • 41
    • 67650573077 scopus 로고    scopus 로고
    • iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations
    • S. C. Henry F. J. Zinner P. M. Cohoon L. R. Stevens iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations Genome Biol. 2009 10 R69
    • (2009) Genome Biol. , vol.10 , pp. R69
    • Henry, S.C.1    Zinner, F.J.2    Cohoon, P.M.3    Stevens, L.R.4
  • 42
    • 79956200825 scopus 로고    scopus 로고
    • Model decomposition and reduction tools for large-scale networks in systems biology
    • J. Anderson C. Y. Chang A. Papachristodoulou Model decomposition and reduction tools for large-scale networks in systems biology Automatica 2011 47 1165 1174
    • (2011) Automatica , vol.47 , pp. 1165-1174
    • Anderson, J.1    Chang, C.Y.2    Papachristodoulou, A.3
  • 43
    • 84876062451 scopus 로고    scopus 로고
    • Reduction of dynamical biochemical reactions networks in computational biology
    • O. Radulescu N. A. Gorban A. Zinovyev V. Noel Reduction of dynamical biochemical reactions networks in computational biology Front. Genet. 2012 3 131
    • (2012) Front. Genet. , vol.3 , pp. 131
    • Radulescu, O.1    Gorban, N.A.2    Zinovyev, A.3    Noel, V.4
  • 45
    • 70049110173 scopus 로고    scopus 로고
    • Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production
    • C. Colijn et al., Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production PLoS Comput. Biol. 2009 5 e1000489
    • (2009) PLoS Comput. Biol. , vol.5
    • Colijn, C.1
  • 46
    • 0037008673 scopus 로고    scopus 로고
    • Transcriptional regulation in constraints-based metabolic models of Escherichia coli
    • W. M. Covert B. Ø. Palsson Transcriptional regulation in constraints-based metabolic models of Escherichia coli J. Biol. Chem. 2002 277 28058 28064
    • (2002) J. Biol. Chem. , vol.277 , pp. 28058-28064
    • Covert, W.M.1    Palsson, B.Ø.2
  • 47
    • 77954197778 scopus 로고    scopus 로고
    • Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model
    • K. Yizhak T. Benyamini W. Liebermeister E. Ruppin T. Shlomi Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model Bioinformatics 2010 26 i255 i260
    • (2010) Bioinformatics , vol.26 , pp. i255-i260
    • Yizhak, K.1    Benyamini, T.2    Liebermeister, W.3    Ruppin, E.4    Shlomi, T.5
  • 48
    • 36248990302 scopus 로고    scopus 로고
    • Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks
    • A. Hoppe S. Hoffmann H.-G. Holzhütter Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks BMC Syst. Biol. 2007 1 23
    • (2007) BMC Syst. Biol. , vol.1 , pp. 23
    • Hoppe, A.1    Hoffmann, S.2    Holzhütter, H.-G.3
  • 49
    • 33745433792 scopus 로고    scopus 로고
    • Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data
    • 0034
    • A. Kümmel S. Panke M. Heinemann Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data Mol. Syst. Biol. 2006 2 2006.0034
    • (2006) Mol. Syst. Biol. , vol.2 , pp. 2006
    • Kümmel, A.1    Panke, S.2    Heinemann, M.3
  • 50
    • 84858439602 scopus 로고    scopus 로고
    • Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods
    • E. N. Lewis H. Nagarajan O. B. Palsson Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods Nat. Rev. Microbiol. 2012 10 291 305
    • (2012) Nat. Rev. Microbiol. , vol.10 , pp. 291-305
    • Lewis, E.N.1    Nagarajan, H.2    Palsson, O.B.3
  • 51
    • 84864258618 scopus 로고    scopus 로고
    • A Whole-Cell Computational Model Predicts Phenotype from Genotype
    • R. J. Karr et al., A Whole-Cell Computational Model Predicts Phenotype from Genotype Cell 2012 150 389 401
    • (2012) Cell , vol.150 , pp. 389-401
    • Karr, R.J.1
  • 53
    • 77956651201 scopus 로고    scopus 로고
    • Biochemical network-based drug-target prediction
    • E. Klipp C. R. Wade U. Kummer Biochemical network-based drug-target prediction Curr. Opin. Biotechnol. 2010 21 511 516
    • (2010) Curr. Opin. Biotechnol. , vol.21 , pp. 511-516
    • Klipp, E.1    Wade, C.R.2    Kummer, U.3
  • 54
    • 71749113685 scopus 로고    scopus 로고
    • TIde: a software for the systematic scanning of drug targets in kinetic network models
    • M. Schulz M. B. Bakker E. Klipp TIde: a software for the systematic scanning of drug targets in kinetic network models BMC Bioinf. 2009 10 344
    • (2009) BMC Bioinf. , vol.10 , pp. 344
    • Schulz, M.1    Bakker, M.B.2    Klipp, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.