메뉴 건너뛰기




Volumn 6, Issue 2, 2015, Pages 157-174

Multivariate meta-analysis using individual participant data

Author keywords

Bivariate meta analysis; Correlation; Individual participant data (IPD); Individual patient data; Multiple outcomes; Multivariate meta analysis

Indexed keywords

BAYES THEOREM; COMPUTER SIMULATION; HUMAN; META ANALYSIS (TOPIC); METHODOLOGY; MULTIVARIATE ANALYSIS; OUTCOME ASSESSMENT; PROCEDURES; SOFTWARE; STATISTICAL ANALYSIS; STATISTICAL MODEL;

EID: 84938684946     PISSN: None     EISSN: 17592887     Source Type: Journal    
DOI: 10.1002/jrsm.1129     Document Type: Article
Times cited : (75)

References (96)
  • 4
  • 5
    • 0034557223 scopus 로고    scopus 로고
    • Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage
    • Barnard J, McCulloch R, Meng XL. 2000. Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage. Statistica Sinica 10(4): 1281-1331.
    • (2000) Statistica Sinica , vol.10 , Issue.4 , pp. 1281-1331
    • Barnard, J.1    McCulloch, R.2    Meng, X.L.3
  • 6
    • 0006711674 scopus 로고    scopus 로고
    • Multivariate Meta-analysis
    • In Multivariate Meta-analysis, Tinsley HEA, Brown S (eds). Academic Press: San Diego.
    • Becker BJ. 2000. Multivariate Meta-analysis. In Multivariate Meta-analysis, Tinsley HEA, Brown S (eds). Academic Press: San Diego.
    • (2000)
    • Becker, B.J.1
  • 9
    • 0037083255 scopus 로고    scopus 로고
    • Individual patient- versus group-level data metaregressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head
    • Berlin JA, Santanna J, Schmid CH, Szczech LA, Feldman HI. 2002. Individual patient- versus group-level data metaregressions for the investigation of treatment effect modifiers: ecological bias rears its ugly head. Statistics in Medicine 21: 371-387.
    • (2002) Statistics in Medicine , vol.21 , pp. 371-387
    • Berlin, J.A.1    Santanna, J.2    Schmid, C.H.3    Szczech, L.A.4    Feldman, H.I.5
  • 10
    • 0001829596 scopus 로고
    • Analysis of survival data under the proportional hazards model
    • Breslow NE. 1975. Analysis of survival data under the proportional hazards model. International Statistical Review 43: 45-57.
    • (1975) International Statistical Review , vol.43 , pp. 45-57
    • Breslow, N.E.1
  • 13
    • 0001863948 scopus 로고    scopus 로고
    • The validation of surrogate endpoints in metaanalyses of randomized experiments
    • Buyse M, Molenberghs G, Burzykowski T, Renard D, Geys H. 2000. The validation of surrogate endpoints in metaanalyses of randomized experiments. Biostatistics 1: 49-67.
    • (2000) Biostatistics , vol.1 , pp. 49-67
    • Buyse, M.1    Molenberghs, G.2    Burzykowski, T.3    Renard, D.4    Geys, H.5
  • 14
    • 70350156608 scopus 로고    scopus 로고
    • Use of meta-analysis for the validation of surrogate endpoints and biomarkers in cancer trials
    • Buyse M. 2009. Use of meta-analysis for the validation of surrogate endpoints and biomarkers in cancer trials. Cancer Journal 15: 421-425.
    • (2009) Cancer Journal , vol.15 , pp. 421-425
    • Buyse, M.1
  • 15
    • 84871657542 scopus 로고    scopus 로고
    • A method of moments estimator for random effect multivariate metaanalysis
    • Chen H, Manning AK, Dupuis J. 2012. A method of moments estimator for random effect multivariate metaanalysis. Biometrics 68: 1278-1284.
    • (2012) Biometrics , vol.68 , pp. 1278-1284
    • Chen, H.1    Manning, A.K.2    Dupuis, J.3
  • 18
    • 0030777744 scopus 로고    scopus 로고
    • Meta-analysis for the evaluation of potential surrogate markers
    • Daniels MJ, Hughes MD. 1997. Meta-analysis for the evaluation of potential surrogate markers. Statistics in Medicine 16: 1965-1982.
    • (1997) Statistics in Medicine , vol.16 , pp. 1965-1982
    • Daniels, M.J.1    Hughes, M.D.2
  • 19
    • 0028630783 scopus 로고
    • Iterative generalized least squares for meta-analysis of survival data at multiple times
    • Dear KB. 1994. Iterative generalized least squares for meta-analysis of survival data at multiple times. Biometrics 50: 989-1002.
    • (1994) Biometrics , vol.50 , pp. 989-1002
    • Dear, K.B.1
  • 21
    • 84880044696 scopus 로고    scopus 로고
    • A framework for developing, implementing, and evaluating clinical prediction models in an individual participant data meta-analysis
    • Debray TP, Moons KG, Ahmed I, Koffijberg H, Riley RD. 2013. A framework for developing, implementing, and evaluating clinical prediction models in an individual participant data meta-analysis. Statistics in Medicine 32: 3158-3158.
    • (2013) Statistics in Medicine , vol.32 , pp. 3158-3158
    • Debray, T.P.1    Moons, K.G.2    Ahmed, I.3    Koffijberg, H.4    Riley, R.D.5
  • 23
    • 84873978476 scopus 로고    scopus 로고
    • Combining individual patient data and aggregate data in mixed treatment comparison meta-analysis: Individual patient data may be beneficial if only for a subset of trials
    • Donegan S, Williamson P, D'Alessandro U, Garner P, Smith CT. 2013. Combining individual patient data and aggregate data in mixed treatment comparison meta-analysis: Individual patient data may be beneficial if only for a subset of trials. Statistics in Medicine 32: 914-930.
    • (2013) Statistics in Medicine , vol.32 , pp. 914-930
    • Donegan, S.1    Williamson, P.2    D'Alessandro, U.3    Garner, P.4    Smith, C.T.5
  • 24
    • 84899926019 scopus 로고    scopus 로고
    • An approach for modelling multiple correlated outcomes in a network of interventions using odds ratios
    • Efthimiou O, Mavridis D, Cipriani A, Leucht S, Bagos P, Salanti G. 2014a. An approach for modelling multiple correlated outcomes in a network of interventions using odds ratios. Statistics in Medicine 33: 2275-2287.
    • (2014) Statistics in Medicine , vol.33 , pp. 2275-2287
    • Efthimiou, O.1    Mavridis, D.2    Cipriani, A.3    Leucht, S.4    Bagos, P.5    Salanti, G.6
  • 27
    • 80051753238 scopus 로고    scopus 로고
    • Multivariate meta-analysis: A method to summarize non-linear associations
    • Gasparrini A, Armstrong B. 2011. Multivariate meta-analysis: A method to summarize non-linear associations. Statistics in Medicine 30: 2504-2506.
    • (2011) Statistics in Medicine , vol.30 , pp. 2504-2506
    • Gasparrini, A.1    Armstrong, B.2
  • 28
    • 84870061584 scopus 로고    scopus 로고
    • Multivariate meta-analysis for non-linear and other multiparameter associations
    • Gasparrini A, Armstrong B, Kenward MG. 2012. Multivariate meta-analysis for non-linear and other multiparameter associations. Statistics in Medicine 31: 3821-39.
    • (2012) Statistics in Medicine , vol.31 , pp. 3821-3839
    • Gasparrini, A.1    Armstrong, B.2    Kenward, M.G.3
  • 29
    • 0023484789 scopus 로고
    • Quantitative methods in the review of epidemiologic literature
    • Greenland S. 1987. Quantitative methods in the review of epidemiologic literature. Epidemiologic Reviews 9: 1-30.
    • (1987) Epidemiologic Reviews , vol.9 , pp. 1-30
    • Greenland, S.1
  • 30
    • 0026777701 scopus 로고
    • Methods for trend estimation from summarized dose-response data, with applications to meta-analysis
    • Greenland S, Longnecker MP. 1992. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. American Journal of Epidemiology 135: 1301-1309.
    • (1992) American Journal of Epidemiology , vol.135 , pp. 1301-1309
    • Greenland, S.1    Longnecker, M.P.2
  • 32
    • 36849058782 scopus 로고    scopus 로고
    • The binomial distribution of meta-analysis was preferred to model within-study variability
    • Hamza TH, van Houwelingen HC, Stijnen T. 2008. The binomial distribution of meta-analysis was preferred to model within-study variability. Journal of Clinical Epidemiology 61: 41-51.
    • (2008) Journal of Clinical Epidemiology , vol.61 , pp. 41-51
    • Hamza, T.H.1    van Houwelingen, H.C.2    Stijnen, T.3
  • 34
    • 34147095920 scopus 로고    scopus 로고
    • A unification of models for meta-analysis of diagnostic accuracy studies
    • Harbord RM, Deeks JJ, Egger M, Whiting P, Sterne JA. 2007. A unification of models for meta-analysis of diagnostic accuracy studies. Biostatistics 8: 239-251.
    • (2007) Biostatistics , vol.8 , pp. 239-251
    • Harbord, R.M.1    Deeks, J.J.2    Egger, M.3    Whiting, P.4    Sterne, J.A.5
  • 37
    • 33745453391 scopus 로고    scopus 로고
    • Improving ecological inference using individual-level data
    • Jackson C, Best N, Richardson S. 2006. Improving ecological inference using individual-level data. Statistics in Medicine 25: 2136-2159.
    • (2006) Statistics in Medicine , vol.25 , pp. 2136-2159
    • Jackson, C.1    Best, N.2    Richardson, S.3
  • 38
    • 84892485024 scopus 로고    scopus 로고
    • A refined method for multivariate meta-analysis and meta-regression
    • Jackson D, Riley RD. 2014. A refined method for multivariate meta-analysis and meta-regression. Statistics in Medicine 33: 541-554.
    • (2014) Statistics in Medicine , vol.33 , pp. 541-554
    • Jackson, D.1    Riley, R.D.2
  • 39
  • 40
    • 84870066370 scopus 로고    scopus 로고
    • Quantifying the impact of between-study heterogeneity in multivariate metaanalyses
    • Jackson D, White IR, Riley RD. 2012. Quantifying the impact of between-study heterogeneity in multivariate metaanalyses. Statistics in Medicine 31: 3805-3820.
    • (2012) Statistics in Medicine , vol.31 , pp. 3805-3820
    • Jackson, D.1    White, I.R.2    Riley, R.D.3
  • 41
    • 84874970954 scopus 로고    scopus 로고
    • A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression
    • Jackson D, White IR, Riley RD. 2013. A matrix-based method of moments for fitting the multivariate random effects model for meta-analysis and meta-regression. Biometrical Journal 55: 231-245.
    • (2013) Biometrical Journal , vol.55 , pp. 231-245
    • Jackson, D.1    White, I.R.2    Riley, R.D.3
  • 42
    • 77952828976 scopus 로고    scopus 로고
    • Extending DerSimonian and Laird's methodology to perform multivariate random effects meta-analyses
    • Jackson D, White IR, Thompson SG. 2010. Extending DerSimonian and Laird's methodology to perform multivariate random effects meta-analyses. Statistics in Medicine 29: 1282-1297.
    • (2010) Statistics in Medicine , vol.29 , pp. 1282-1297
    • Jackson, D.1    White, I.R.2    Thompson, S.G.3
  • 43
    • 62149129273 scopus 로고    scopus 로고
    • Meta-analysis of individual patient data versus aggregate data from longitudinal clinical trials
    • Jones AP, Riley RD, Williamson PR, Whitehead A. 2009. Meta-analysis of individual patient data versus aggregate data from longitudinal clinical trials. Clinical Trials 6: 16-27.
    • (2009) Clinical Trials , vol.6 , pp. 16-27
    • Jones, A.P.1    Riley, R.D.2    Williamson, P.R.3    Whitehead, A.4
  • 44
    • 84865295846 scopus 로고    scopus 로고
    • A multivariate meta-analysis approach for reducing the impact of outcome reporting bias in systematic reviews
    • Kirkham JJ, Riley RD, Williamson PR. 2012. A multivariate meta-analysis approach for reducing the impact of outcome reporting bias in systematic reviews. Statistics in Medicine 31: 2179-2195.
    • (2012) Statistics in Medicine , vol.31 , pp. 2179-2195
    • Kirkham, J.J.1    Riley, R.D.2    Williamson, P.R.3
  • 45
    • 84889681963 scopus 로고    scopus 로고
    • Meta-analysis for diagnostic accuracy studies: a new statistical model using beta-binomial distributions and bivariate copulas
    • Kuss O, Hoyer A, Solms A. 2014. Meta-analysis for diagnostic accuracy studies: a new statistical model using beta-binomial distributions and bivariate copulas. Statistics in Medicine 33: 17-30.
    • (2014) Statistics in Medicine , vol.33 , pp. 17-30
    • Kuss, O.1    Hoyer, A.2    Solms, A.3
  • 46
    • 23244434820 scopus 로고    scopus 로고
    • How Vague is Vague? A simulation study of the impact of the use of vague prior distributions in MCMC
    • Lambert PC, Sutton AJ, Burton PR, Abrams KR, Jones DR. 2005. How Vague is Vague? A simulation study of the impact of the use of vague prior distributions in MCMC. Statistics in Medicine 24: 2401-2428.
    • (2005) Statistics in Medicine , vol.24 , pp. 2401-2428
    • Lambert, P.C.1    Sutton, A.J.2    Burton, P.R.3    Abrams, K.R.4    Jones, D.R.5
  • 47
    • 38949124690 scopus 로고    scopus 로고
    • Flexible parametric models for random-effects distributions
    • Lee KJ, Thompson SG. 2008. Flexible parametric models for random-effects distributions. Statistics in Medicine 27: 418-434.
    • (2008) Statistics in Medicine , vol.27 , pp. 418-434
    • Lee, K.J.1    Thompson, S.G.2
  • 48
    • 0031769003 scopus 로고    scopus 로고
    • Comparison of active treatment and placebo in older Chinese patients with isolated systolic hypertension. Systolic Hypertension in China (Syst-China) Collaborative Group
    • Liu L, Wang JG, Gong L, Liu G, Staessen JA. 1998. Comparison of active treatment and placebo in older Chinese patients with isolated systolic hypertension. Systolic Hypertension in China (Syst-China) Collaborative Group. Journal of Hypertension 16: 1823-1829.
    • (1998) Journal of Hypertension , vol.16 , pp. 1823-1829
    • Liu, L.1    Wang, J.G.2    Gong, L.3    Liu, G.4    Staessen, J.A.5
  • 49
    • 81155160857 scopus 로고    scopus 로고
    • Multivariate meta-analysis: a robust approach based on the theory of U-statistic
    • Ma Y, Mazumdar M. 2011. Multivariate meta-analysis: a robust approach based on the theory of U-statistic. Statistics in Medicine 30: 2911-2929.
    • (2011) Statistics in Medicine , vol.30 , pp. 2911-2929
    • Ma, Y.1    Mazumdar, M.2
  • 52
    • 84555206571 scopus 로고    scopus 로고
    • Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software
    • Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D. 2012. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. American Journal of Epidemiology 175: 66-73.
    • (2012) American Journal of Epidemiology , vol.175 , pp. 66-73
    • Orsini, N.1    Li, R.2    Wolk, A.3    Khudyakov, P.4    Spiegelman, D.5
  • 53
    • 78650770355 scopus 로고    scopus 로고
    • Parameterization of treatment effects for meta-analysis in multi-state Markov models
    • Price MJ, Welton NJ, Ades AE. 2011. Parameterization of treatment effects for meta-analysis in multi-state Markov models. Statistics in Medicine 30: 140-151.
    • (2011) Statistics in Medicine , vol.30 , pp. 140-151
    • Price, M.J.1    Welton, N.J.2    Ades, A.E.3
  • 54
    • 34248397713 scopus 로고    scopus 로고
    • Tutorial in biostatistics: competing risks and multi-state models
    • Putter H, Fiocco M, Geskus RB. 2007. Tutorial in biostatistics: competing risks and multi-state models. Statistics in Medicine 26: 2389-2430.
    • (2007) Statistics in Medicine , vol.26 , pp. 2389-2430
    • Putter, H.1    Fiocco, M.2    Geskus, R.B.3
  • 57
    • 70349508931 scopus 로고    scopus 로고
    • Multivariate meta-analysis: the effect of ignoring within-study correlation
    • Riley RD. 2009. Multivariate meta-analysis: the effect of ignoring within-study correlation. Journal of the Royal Statistical Society, Series A 172(4): 789-811.
    • (2009) Journal of the Royal Statistical Society, Series A , vol.172 , Issue.4 , pp. 789-811
    • Riley, R.D.1
  • 58
    • 33846216340 scopus 로고    scopus 로고
    • An evaluation of bivariate random-effects metaanalysis for the joint synthesis of two correlated outcomes
    • Riley RD, Abrams KR, Lambert PC, Sutton AJ, Thompson JR. 2007a. An evaluation of bivariate random-effects metaanalysis for the joint synthesis of two correlated outcomes. Statistics in Medicine 26: 78-97.
    • (2007) Statistics in Medicine , vol.26 , pp. 78-97
    • Riley, R.D.1    Abrams, K.R.2    Lambert, P.C.3    Sutton, A.J.4    Thompson, J.R.5
  • 60
    • 84879169822 scopus 로고    scopus 로고
    • Meta-analysis of randomised trials with a continuous outcome according to baseline imbalance and availability of individual participant data
    • Riley RD, Kauser I, Bland M, Thijs L, Staessen JA, Wang J, Gueyffier F, Deeks JJ. 2013. Meta-analysis of randomised trials with a continuous outcome according to baseline imbalance and availability of individual participant data. Statistics in Medicine 32: 2747-2766.
    • (2013) Statistics in Medicine , vol.32 , pp. 2747-2766
    • Riley, R.D.1    Kauser, I.2    Bland, M.3    Thijs, L.4    Staessen, J.A.5    Wang, J.6    Gueyffier, F.7    Deeks, J.J.8
  • 61
    • 77749306261 scopus 로고    scopus 로고
    • Meta-analysis of individual participant data: rationale, conduct, and reporting
    • Riley RD, Lambert PC, Abo-Zaid G. 2010. Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ 340: c221.
    • (2010) BMJ , vol.340
    • Riley, R.D.1    Lambert, P.C.2    Abo-Zaid, G.3
  • 63
    • 34047170379 scopus 로고    scopus 로고
    • Evidence synthesis combining individual patient data and aggregate data: a systematic review identified current practice and possible methods
    • Riley RD, Simmonds MC, Look MP. 2007c. Evidence synthesis combining individual patient data and aggregate data: a systematic review identified current practice and possible methods. Journal of Clinical Epidemiology 60: 431-439.
    • (2007) Journal of Clinical Epidemiology , vol.60 , pp. 431-439
    • Riley, R.D.1    Simmonds, M.C.2    Look, M.P.3
  • 64
    • 78149266539 scopus 로고    scopus 로고
    • Meta-analysis of a binary outcome using individual participant data and aggregate data
    • Riley RD, Steyerberg EW. 2010. Meta-analysis of a binary outcome using individual participant data and aggregate data. Journal of Reseach Synthesis Methods 1: 2-9.
    • (2010) Journal of Reseach Synthesis Methods , vol.1 , pp. 2-9
    • Riley, R.D.1    Steyerberg, E.W.2
  • 66
    • 37249067617 scopus 로고    scopus 로고
    • An alternative model for bivariate random-effects meta-analysis when the within-study correlations are unknown
    • Riley RD, Thompson JR, Abrams KR. 2008a. An alternative model for bivariate random-effects meta-analysis when the within-study correlations are unknown. Biostatistics 9: 172-186.
    • (2008) Biostatistics , vol.9 , pp. 172-186
    • Riley, R.D.1    Thompson, J.R.2    Abrams, K.R.3
  • 67
    • 84873900666 scopus 로고    scopus 로고
    • A joint model for the dependence between clustered times to tumour progression and deaths: A meta-analysis of chemotherapy in head and neck cancer
    • Rondeau V, Pignon JP, Michiels S. 2011. A joint model for the dependence between clustered times to tumour progression and deaths: A meta-analysis of chemotherapy in head and neck cancer. Statistical Methods in Medical Research 897: 1-19.
    • (2011) Statistical Methods in Medical Research , vol.897 , pp. 1-19
    • Rondeau, V.1    Pignon, J.P.2    Michiels, S.3
  • 68
    • 85164560670 scopus 로고    scopus 로고
    • Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool
    • Salanti G. 2012. Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. Research Synthesis Methods 3: 80-97.
    • (2012) Research Synthesis Methods , vol.3 , pp. 80-97
    • Salanti, G.1
  • 69
    • 84870254031 scopus 로고    scopus 로고
    • Mixed treatment comparisons using aggregate and individual participant level data
    • Saramago P, Sutton AJ, Cooper NJ, Manca A. 2012. Mixed treatment comparisons using aggregate and individual participant level data. Statistics in Medicine 31: 3516-3536.
    • (2012) Statistics in Medicine , vol.31 , pp. 3516-3536
    • Saramago, P.1    Sutton, A.J.2    Cooper, N.J.3    Manca, A.4
  • 70
    • 81955164833 scopus 로고    scopus 로고
    • A new strategy for meta-analysis of continuous covariates in observational studies
    • Sauerbrei W, Royston P. 2011. A new strategy for meta-analysis of continuous covariates in observational studies. Statistics in Medicine 30: 3341-3360.
    • (2011) Statistics in Medicine , vol.30 , pp. 3341-3360
    • Sauerbrei, W.1    Royston, P.2
  • 71
    • 84938692431 scopus 로고    scopus 로고
    • Bayesian network meta-analysis for unordered categorical outcomes with incomplete data
    • Schmid CH, Trikalinos TA, Olkin I. 2014. Bayesian network meta-analysis for unordered categorical outcomes with incomplete data. Research Synthesis Methods 5: 162-185.
    • (2014) Research Synthesis Methods , vol.5 , pp. 162-185
    • Schmid, C.H.1    Trikalinos, T.A.2    Olkin, I.3
  • 72
    • 77952577480 scopus 로고    scopus 로고
    • Hans van Houwelingen and the art of summing up
    • Senn S. 2010. Hans van Houwelingen and the art of summing up. Biometrical Journal 52: 85-94.
    • (2010) Biometrical Journal , vol.52 , pp. 85-94
    • Senn, S.1
  • 73
    • 43049153857 scopus 로고    scopus 로고
    • Statistical Methodology of Individual Patient Data
    • Ph.D. Thesis, University of Cambridge.
    • Simmonds MC. 2005. Statistical Methodology of Individual Patient Data. Ph.D. Thesis, University of Cambridge.
    • (2005)
    • Simmonds, M.C.1
  • 74
    • 34250620135 scopus 로고    scopus 로고
    • Covariate heterogeneity in meta-analysis: criteria for deciding between metaregression and individual patient data
    • Simmonds MC, Higgins JP. 2007. Covariate heterogeneity in meta-analysis: criteria for deciding between metaregression and individual patient data. Statistics in Medicine 26: 2982-2999.
    • (2007) Statistics in Medicine , vol.26 , pp. 2982-2999
    • Simmonds, M.C.1    Higgins, J.P.2
  • 76
    • 0003541633 scopus 로고    scopus 로고
    • WinBUGS version 1.3 User Manual
    • MRC Biostatistics Unit: Cambridge.
    • Spiegelhalter DJ, Thomas A, Best NG. 2000. WinBUGS version 1.3 User Manual. MRC Biostatistics Unit: Cambridge.
    • (2000)
    • Spiegelhalter, D.J.1    Thomas, A.2    Best, N.G.3
  • 80
    • 78649672029 scopus 로고    scopus 로고
    • Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data
    • Stijnen T, Hamza TH, Özdemir P. 2010. Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. Statistics in Medicine 29: 3046-3067.
    • (2010) Statistics in Medicine , vol.29 , pp. 3046-3067
    • Stijnen, T.1    Hamza, T.H.2    Özdemir, P.3
  • 82
    • 65649135034 scopus 로고    scopus 로고
    • Systematically missing confounders in individual participant data meta-analysis of observational cohort studies
    • The Fibrinogen Studies Collaboration. 2009. Systematically missing confounders in individual participant data meta-analysis of observational cohort studies. Statistics in Medicine 28: 1218-1237.
    • (2009) Statistics in Medicine , vol.28 , pp. 1218-1237
  • 83
    • 84899914338 scopus 로고    scopus 로고
    • Empirical and Simulation-Based Comparison of Univariate and Multivariate Meta-Analysis for Binary Outcomes. Methods Research Report
    • Agency for Healthcare Research and Quality: Publication No. 13-EHC066-EF.
    • Trikalinos TA, Hoaglin DC, Schmid CH. 2013. Empirical and Simulation-Based Comparison of Univariate and Multivariate Meta-Analysis for Binary Outcomes. Methods Research Report. Agency for Healthcare Research and Quality: Publication No. 13-EHC066-EF.
    • (2013)
    • Trikalinos, T.A.1    Hoaglin, D.C.2    Schmid, C.H.3
  • 84
    • 78149260793 scopus 로고    scopus 로고
    • Statistical methods for the time-to-event analysis of individual participant data from multiple epidemiological studies
    • Thompson SG, Kaptoge S, White I, Wood A, Perry P, Danesh J. 2010. Statistical methods for the time-to-event analysis of individual participant data from multiple epidemiological studies. International Journal of Epidemiology 39: 1345-1359.
    • (2010) International Journal of Epidemiology , vol.39 , pp. 1345-1359
    • Thompson, S.G.1    Kaptoge, S.2    White, I.3    Wood, A.4    Perry, P.5    Danesh, J.6
  • 85
  • 86
    • 84898056914 scopus 로고    scopus 로고
    • An empirical comparison of univariate and multivariate meta-analyses for categorical outcomes
    • Trikalinos TA, Hoaglin DC, Schmid CH. 2014. An empirical comparison of univariate and multivariate meta-analyses for categorical outcomes. Statistics in Medicine 33: 1441-1459.
    • (2014) Statistics in Medicine , vol.33 , pp. 1441-1459
    • Trikalinos, T.A.1    Hoaglin, D.C.2    Schmid, C.H.3
  • 87
    • 84867524702 scopus 로고    scopus 로고
    • Meta-analysis of effect sizes reported at multiple time points: a multivariate approach
    • Trikalinos TA, Olkin I. 2012. Meta-analysis of effect sizes reported at multiple time points: a multivariate approach. Clinical Trials. 9(5): 610-620.
    • (2012) Clinical Trials. , vol.9 , Issue.5 , pp. 610-620
    • Trikalinos, T.A.1    Olkin, I.2
  • 88
    • 50849135168 scopus 로고    scopus 로고
    • A method for the meta-analysis of mutually exclusive binary outcomes
    • Trikalinos TA, Olkin I. 2008. A method for the meta-analysis of mutually exclusive binary outcomes. Statistics in Medicine 27: 4279-4300.
    • (2008) Statistics in Medicine , vol.27 , pp. 4279-4300
    • Trikalinos, T.A.1    Olkin, I.2
  • 89
    • 0037186429 scopus 로고    scopus 로고
    • Advanced methods in meta-analysis: multivariate approach and meta-regression
    • Van Houwelingen HC, Arends LR, Stijnen T. 2002. Advanced methods in meta-analysis: multivariate approach and meta-regression. Statistics in Medicine 21: 589-624.
    • (2002) Statistics in Medicine , vol.21 , pp. 589-624
    • Van Houwelingen, H.C.1    Arends, L.R.2    Stijnen, T.3
  • 91
    • 18244368464 scopus 로고    scopus 로고
    • Systolic and diastolic blood pressure lowering as determinants of cardiovascular outcome
    • Wang JG, Staessen JA, Franklin SS, Fagard R, Gueyffier F. 2005. Systolic and diastolic blood pressure lowering as determinants of cardiovascular outcome. Hypertension 45: 907-913.
    • (2005) Hypertension , vol.45 , pp. 907-913
    • Wang, J.G.1    Staessen, J.A.2    Franklin, S.S.3    Fagard, R.4    Gueyffier, F.5
  • 92
    • 0027529306 scopus 로고
    • A bivariate survival model with modified gamma frailty for assessing the impact of interventions
    • Wassell JT, Moeschberger ML. 1993. A bivariate survival model with modified gamma frailty for assessing the impact of interventions. Statistics in Medicine 12: 241-248.
    • (1993) Statistics in Medicine , vol.12 , pp. 241-248
    • Wassell, J.T.1    Moeschberger, M.L.2
  • 93
    • 84880037799 scopus 로고    scopus 로고
    • Bayesian multivariate meta-analysis with multiple outcomes
    • Wei Y, Higgins JP. 2013a. Bayesian multivariate meta-analysis with multiple outcomes. Statistics in Medicine 32: 2911-2934.
    • (2013) Statistics in Medicine , vol.32 , pp. 2911-2934
    • Wei, Y.1    Higgins, J.P.2
  • 94
    • 84874964872 scopus 로고    scopus 로고
    • Estimating within-study covariances in multivariate meta-analysis with multiple outcomes
    • Wei Y, Higgins JP. 2013b. Estimating within-study covariances in multivariate meta-analysis with multiple outcomes. Statistics in Medicine 32: 1191-1205.
    • (2013) Statistics in Medicine , vol.32 , pp. 1191-1205
    • Wei, Y.1    Higgins, J.P.2
  • 95
    • 68149160854 scopus 로고    scopus 로고
    • Multivariate meta-analysis
    • White IR. 2009. Multivariate meta-analysis. The STATA Journal 9: 40-56.
    • (2009) The STATA Journal , vol.9 , pp. 40-56
    • White, I.R.1
  • 96
    • 84875612338 scopus 로고    scopus 로고
    • Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression
    • White IR, Barrett JK, Jackson D, Higgins JPT. 2012. Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Research Synthesis Methods 3: 111-125.
    • (2012) Research Synthesis Methods , vol.3 , pp. 111-125
    • White, I.R.1    Barrett, J.K.2    Jackson, D.3    Higgins, J.P.T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.