메뉴 건너뛰기




Volumn 32, Issue 18, 2013, Pages 3158-3180

A framework for developing, implementing, and evaluating clinical prediction models in an individual participant data meta-analysis

Author keywords

Individual participant data (IPD); Internal external validation; Logistic regression; Meta analysis; Multivariable; Prediction research; Risk prediction models

Indexed keywords

ARTICLE; CONTROLLED STUDY; HUMAN; INDIVIDUAL PARTICIPANT DATA; LOGISTIC REGRESSION ANALYSIS; MATHEMATICAL COMPUTING; MATHEMATICAL MODEL; MEDICAL DOCUMENTATION; META ANALYSIS (TOPIC); MULTIVARIATE ANALYSIS; POISSON DISTRIBUTION; PREDICTION; PROBABILITY; PROCESS DEVELOPMENT; RELIABILITY; RISK ASSESSMENT; SAMPLE SIZE; VALIDATION PROCESS;

EID: 84880044696     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.5732     Document Type: Article
Times cited : (154)

References (63)
  • 1
    • 33644855006 scopus 로고    scopus 로고
    • Translating clinical research into clinical practice: impact of using prediction rules to make decisions
    • Reilly BM, Evans AT. Translating clinical research into clinical practice: impact of using prediction rules to make decisions. Annals of Internal Medicine 2006; 144(3):201-209.
    • (2006) Annals of Internal Medicine , vol.144 , Issue.3 , pp. 201-209
    • Reilly, B.M.1    Evans, A.T.2
  • 2
    • 84860113852 scopus 로고    scopus 로고
    • Risk prediction models: I.Development, internal validation, and assessing the incremental value of a new (bio)marker
    • DOI: 10.1136/heartjnl-2011-301246.
    • Moons KGM, Kengne AP, Woodward M, Royston P, Vergouwe Y, Altman DG, Grobbee DE. Risk prediction models: I.Development, internal validation, and assessing the incremental value of a new (bio)marker. Heart 2012; 98(9):683-690. DOI: 10.1136/heartjnl-2011-301246.
    • (2012) Heart , vol.98 , Issue.9 , pp. 683-690
    • Moons, K.G.M.1    Kengne, A.P.2    Woodward, M.3    Royston, P.4    Vergouwe, Y.5    Altman, D.G.6    Grobbee, D.E.7
  • 3
    • 84858999435 scopus 로고    scopus 로고
    • Clinical prediction rules
    • DOI: 10.1136/bmj.d8312.
    • Adams ST, Leveson SH. Clinical prediction rules. British Medical Journal 2012; 344:d8312. DOI: 10.1136/bmj.d8312.
    • (2012) British Medical Journal , vol.344
    • Adams, S.T.1    Leveson, S.H.2
  • 4
    • 0032510639 scopus 로고    scopus 로고
    • Prediction of coronary heart disease using risk factor categories
    • DOI: 10.1161/01.CIR.97.18.1837.
    • Wilson PW, D'Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97(18):1837-1847. DOI: 10.1161/01.CIR.97.18.1837.
    • (1998) Circulation , vol.97 , Issue.18 , pp. 1837-1847
    • Wilson, P.W.1    D'Agostino, R.B.2    Levy, D.3    Belanger, A.M.4    Silbershatz, H.5    Kannel, W.B.6
  • 6
    • 22144442457 scopus 로고    scopus 로고
    • Ruling out deep venous thrombosis in primary care. A simple diagnostic algorithm including D-dimer testing
    • DOI: 10.1160/TH04-12-0829.
    • Oudega R, Moons KGM, Hoes AW. Ruling out deep venous thrombosis in primary care. A simple diagnostic algorithm including D-dimer testing. Thrombosis and Haemostasis 2005; 94(1):200-205. DOI: 10.1160/TH04-12-0829.
    • (2005) Thrombosis and Haemostasis , vol.94 , Issue.1 , pp. 200-205
    • Oudega, R.1    Moons, K.G.M.2    Hoes, A.W.3
  • 9
    • 67650045441 scopus 로고    scopus 로고
    • Prognosis and prognostic research: developing a prognostic model
    • DOI: 10.1136/bmj.b604.
    • Royston P, Moons KGM, Altman DG, Vergouwe Y. Prognosis and prognostic research: developing a prognostic model. British Medical Journal 2009; 338:b604. DOI: 10.1136/bmj.b604.
    • (2009) British Medical Journal , vol.338
    • Royston, P.1    Moons, K.G.M.2    Altman, D.G.3    Vergouwe, Y.4
  • 10
    • 34047170379 scopus 로고    scopus 로고
    • Evidence synthesis combining individual patient data and aggregate data: a systematic review identified current practice and possible methods
    • DOI: 10.1016/j.jclinepi.2006.09.009.
    • Riley RD, Simmonds MC, Look MP. Evidence synthesis combining individual patient data and aggregate data: a systematic review identified current practice and possible methods. Journal of Clinical Epidemiology 2007; 60(5):431-439. DOI: 10.1016/j.jclinepi.2006.09.009.
    • (2007) Journal of Clinical Epidemiology , vol.60 , Issue.5 , pp. 431-439
    • Riley, R.D.1    Simmonds, M.C.2    Look, M.P.3
  • 11
    • 77749306261 scopus 로고    scopus 로고
    • Meta-analysis of individual participant data: rationale, conduct, and reporting
    • DOI: 10.1136/bmj.c221.
    • Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. British Medical Journal 2010; 340:c221. DOI: 10.1136/bmj.c221.
    • (2010) British Medical Journal , vol.340
    • Riley, R.D.1    Lambert, P.C.2    Abo-Zaid, G.3
  • 12
    • 1542506052 scopus 로고    scopus 로고
    • Construction and validation of a prognostic model across several studies, with an application in superficial bladder cancer
    • DOI: 10.1002/sim.1691.
    • Royston P, Parmar MKB, Sylvester R. Construction and validation of a prognostic model across several studies, with an application in superficial bladder cancer. Statistics in Medicine 2004; 23(6):907-926. DOI: 10.1002/sim.1691.
    • (2004) Statistics in Medicine , vol.23 , Issue.6 , pp. 907-926
    • Royston, P.1    Parmar, M.K.B.2    Sylvester, R.3
  • 14
    • 84865793102 scopus 로고    scopus 로고
    • Predicting infectious complications in neutropenic children and young people with cancer (IPD protocol)
    • the PICNICC Collaboration. ; ():. DOI: 10.1186/2046-4053-1-8.
    • Phillips RS, Sutton AJ, Riley RD, Chisholm JC, Picton SV, Stewart LA, the PICNICC Collaboration. Predicting infectious complications in neutropenic children and young people with cancer (IPD protocol). Systematic Reviews 2012; 1(1):8. DOI: 10.1186/2046-4053-1-8.
    • (2012) Systematic Reviews , vol.1 , Issue.1 , pp. 8
    • Phillips, R.S.1    Sutton, A.J.2    Riley, R.D.3    Chisholm, J.C.4    Picton, S.V.5    Stewart, L.A.6
  • 15
    • 0029809569 scopus 로고    scopus 로고
    • Impact of epidemic and individual heterogeneity on the population distribution of disease progression rates. An example from patient populations in trials of human immunodeficiency virus infection
    • Ioannidis JP, Cappelleri JC, Schmid CH, Lau J. Impact of epidemic and individual heterogeneity on the population distribution of disease progression rates. An example from patient populations in trials of human immunodeficiency virus infection. American Journal of Epidemiology 1996; 144(11):1074-1085.
    • (1996) American Journal of Epidemiology , vol.144 , Issue.11 , pp. 1074-1085
    • Ioannidis, J.P.1    Cappelleri, J.C.2    Schmid, C.H.3    Lau, J.4
  • 16
    • 0032401967 scopus 로고    scopus 로고
    • Heterogeneity of the baseline risk within patient populations of clinical trials: a proposed evaluation algorithm
    • Ioannidis JP, Lau J. Heterogeneity of the baseline risk within patient populations of clinical trials: a proposed evaluation algorithm. American Journal of Epidemiology 1998; 148(11):1117-1126.
    • (1998) American Journal of Epidemiology , vol.148 , Issue.11 , pp. 1117-1126
    • Ioannidis, J.P.1    Lau, J.2
  • 17
    • 84860159431 scopus 로고    scopus 로고
    • Risk prediction models: II. External validation, model updating, and impact assessment
    • DOI: 10.1136/heartjnl-2011-301247.
    • Moons KGM, Kengne AP, Grobbee DE, Royston P, Vergouwe Y, Altman DG, Woodward M. Risk prediction models: II. External validation, model updating, and impact assessment. Heart 2012; 98(9):691-698. DOI: 10.1136/heartjnl-2011-301247.
    • (2012) Heart , vol.98 , Issue.9 , pp. 691-698
    • Moons, K.G.M.1    Kengne, A.P.2    Grobbee, D.E.3    Royston, P.4    Vergouwe, Y.5    Altman, D.G.6    Woodward, M.7
  • 18
    • 0030703680 scopus 로고    scopus 로고
    • Variation in baseline risk as an explanation of heterogeneity in meta-analysis
    • DOI: 10.1002/(SICI)1097-0258(19971230)16:24(2883::AID-SIM825)3.0.CO;2-B.
    • Walter SD. Variation in baseline risk as an explanation of heterogeneity in meta-analysis. Statistics in Medicine 1997; 16(24):2883-2900. DOI: 10.1002/(SICI)1097-0258(19971230)16:24(2883::AID-SIM825)3.0.CO;2-B.
    • (1997) Statistics in Medicine , vol.16 , Issue.24 , pp. 2883-2900
    • Walter, S.D.1
  • 19
    • 33847315967 scopus 로고    scopus 로고
    • Odds ratios and logistic regression: further examples of their use and interpretation
    • Hailpern SM, Visintainer PF. Odds ratios and logistic regression: further examples of their use and interpretation. TheStata Journal 2003; 3(3):213-225.
    • (2003) TheStata Journal , vol.3 , Issue.3 , pp. 213-225
    • Hailpern, S.M.1    Visintainer, P.F.2
  • 20
  • 21
    • 0033994631 scopus 로고    scopus 로고
    • Principles of multilevel modelling
    • DOI: 10.1093/ije/29.1.158.
    • Greenland S. Principles of multilevel modelling. International Journal of Epidemiology 2000; 29(1):158-167. DOI: 10.1093/ije/29.1.158.
    • (2000) International Journal of Epidemiology , vol.29 , Issue.1 , pp. 158-167
    • Greenland, S.1
  • 22
    • 79955544813 scopus 로고    scopus 로고
    • Interpretation of random effects meta-analyses
    • DOI: 10.1136/bmj.d549.
    • Riley RD, Higgins JPT, Deeks JJ. Interpretation of random effects meta-analyses. British Medical Journal 2011; 342:d549. DOI: 10.1136/bmj.d549.
    • (2011) British Medical Journal , vol.342
    • Riley, R.D.1    Higgins, J.P.T.2    Deeks, J.J.3
  • 23
    • 78650513469 scopus 로고    scopus 로고
    • Combining heterogenous studies using the random-effects model is a mistake and leads to inconclusive meta-analyses
    • DOI: 10.1016/j.jclinepi.2010.01.009.
    • AlKhalaf MM, Thalib L, Doi SAR. Combining heterogenous studies using the random-effects model is a mistake and leads to inconclusive meta-analyses. Journal of Clinical Epidemiology 2011; 64(2):119-123. DOI: 10.1016/j.jclinepi.2010.01.009.
    • (2011) Journal of Clinical Epidemiology , vol.64 , Issue.2 , pp. 119-123
    • AlKhalaf, M.M.1    Thalib, L.2    Doi, S.A.R.3
  • 24
    • 84866440887 scopus 로고    scopus 로고
    • Aggregating published prediction models with individual participant data: a comparison of different approaches
    • DOI: 10.1002/sim.5412.
    • Debray TPA, Koffijberg H, Vergouwe Y, Moons KG, Steyerberg EW. Aggregating published prediction models with individual participant data: a comparison of different approaches. Statistics in Medicine 2012; 31(23):2697-2712. DOI: 10.1002/sim.5412.
    • (2012) Statistics in Medicine , vol.31 , Issue.23 , pp. 2697-2712
    • Debray, T.P.A.1    Koffijberg, H.2    Vergouwe, Y.3    Moons, K.G.4    Steyerberg, E.W.5
  • 25
    • 0034736564 scopus 로고    scopus 로고
    • Validation, calibration, revision and combination of prognostic survival models
    • DOI: 10.1002/1097-0258(20001230)19:24(3401::AID-SIM554)3.0.CO;2-2.
    • van Houwelingen HC. Validation, calibration, revision and combination of prognostic survival models. Statistics in Medicine 2000; 19(24):3401-3415. DOI: 10.1002/1097-0258(20001230)19:24(3401::AID-SIM554)3.0.CO;2-2.
    • (2000) Statistics in Medicine , vol.19 , Issue.24 , pp. 3401-3415
    • van Houwelingen, H.C.1
  • 26
  • 29
    • 18844475114 scopus 로고    scopus 로고
    • Estimating risk difference in multicenter studies under baseline-risk heterogeneity
    • DOI: 10.1111/j.0006-341X.2000.00304.x.
    • Böhning D, Sarol J Jr. Estimating risk difference in multicenter studies under baseline-risk heterogeneity. Biometrics 2000; 56(1):304-308. DOI: 10.1111/j.0006-341X.2000.00304.x.
    • (2000) Biometrics , vol.56 , Issue.1 , pp. 304-308
    • Böhning, D.1    Sarol Jr., J.2
  • 30
    • 0035133211 scopus 로고    scopus 로고
    • Predictive modeling and heterogeneity of baseline risk in meta-analysis of individual patient data
    • DOI: 10.1016/j.cct.2007.08.002.
    • Trikalinos TA, Ioannidis JP. Predictive modeling and heterogeneity of baseline risk in meta-analysis of individual patient data. Journal of Clinical Epidemiology 2001; 54(3):245-252. DOI: 10.1016/j.cct.2007.08.002.
    • (2001) Journal of Clinical Epidemiology , vol.54 , Issue.3 , pp. 245-252
    • Trikalinos, T.A.1    Ioannidis, J.P.2
  • 32
    • 38949124690 scopus 로고    scopus 로고
    • Flexible parametric models for random-effects distributions
    • DOI: 10.1002/sim.2897.
    • Lee KJ, Thompson SG. Flexible parametric models for random-effects distributions. Statistics in Medicine 2008; 27(3):418-434. DOI: 10.1002/sim.2897.
    • (2008) Statistics in Medicine , vol.27 , Issue.3 , pp. 418-434
    • Lee, K.J.1    Thompson, S.G.2
  • 33
    • 52949100612 scopus 로고    scopus 로고
    • Validation, updating and impact of clinical prediction rules: a review
    • DOI: 10.1016/j.jclinepi.2008.04.008.
    • Toll DB, Janssen KJM, Vergouwe Y, Moons KGM. Validation, updating and impact of clinical prediction rules: a review. Journal of Clinical Epidemiology 2008; 61(11):1085-1094. DOI: 10.1016/j.jclinepi.2008.04.008.
    • (2008) Journal of Clinical Epidemiology , vol.61 , Issue.11 , pp. 1085-1094
    • Toll, D.B.1    Janssen, K.J.M.2    Vergouwe, Y.3    Moons, K.G.M.4
  • 34
    • 0034728356 scopus 로고    scopus 로고
    • What do we mean by validating a prognostic model?
    • DOI: 10.1002/(SICI)1097-0258(20000229)19:4(453::AID-SIM350)3.0.CO;2-5.
    • Altman DG, Royston P. What do we mean by validating a prognostic model? Statistics in Medicine 2000; 19(4):453-473. DOI: 10.1002/(SICI)1097-0258(20000229)19:4(453::AID-SIM350)3.0.CO;2-5.
    • (2000) Statistics in Medicine , vol.19 , Issue.4 , pp. 453-473
    • Altman, D.G.1    Royston, P.2
  • 35
    • 67650082402 scopus 로고    scopus 로고
    • Prognosis and prognostic research: validating a prognostic model
    • DOI: 10.1136/bmj.b605.
    • Altman DG, Vergouwe Y, Royston P, Moons KGM. Prognosis and prognostic research: validating a prognostic model. British Medical Journal 2009; 338:b605. DOI: 10.1136/bmj.b605.
    • (2009) British Medical Journal , vol.338
    • Altman, D.G.1    Vergouwe, Y.2    Royston, P.3    Moons, K.G.M.4
  • 36
    • 73849094087 scopus 로고    scopus 로고
    • Assessing the performance of prediction models: a framework for traditional and novel measures
    • DOI: 10.1097/EDE.0b013e3181c30fb2.
    • Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, Pencina MJ, Kattan MW. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 2010; 21(1):128-138. DOI: 10.1097/EDE.0b013e3181c30fb2.
    • (2010) Epidemiology , vol.21 , Issue.1 , pp. 128-138
    • Steyerberg, E.W.1    Vickers, A.J.2    Cook, N.R.3    Gerds, T.4    Gonen, M.5    Obuchowski, N.6    Pencina, M.J.7    Kattan, M.W.8
  • 37
    • 38749137358 scopus 로고    scopus 로고
    • Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve
    • DOI: 10.1373/clinchem.2007.096529.
    • Cook NR. Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve. Clinical Chemistry 2008; 54(1):17-23. DOI: 10.1373/clinchem.2007.096529.
    • (2008) Clinical Chemistry , vol.54 , Issue.1 , pp. 17-23
    • Cook, N.R.1
  • 38
    • 0000149045 scopus 로고
    • Two further applications of a model for binary regression
    • Cox DR. Two further applications of a model for binary regression. Biometrika 1958; 45(3):562-565.
    • (1958) Biometrika , vol.45 , Issue.3 , pp. 562-565
    • Cox, D.R.1
  • 40
    • 0022786756 scopus 로고
    • Probabilistic prediction in patient management and clinical trials
    • Spiegelhalter DJ. Probabilistic prediction in patient management and clinical trials. Statistics in Medicine 1986; 5(5):421-433.
    • (1986) Statistics in Medicine , vol.5 , Issue.5 , pp. 421-433
    • Spiegelhalter, D.J.1
  • 41
    • 0021135218 scopus 로고
    • Regression modelling strategies for improved prognostic prediction
    • DOI: 10.1002/sim.4780030207.
    • Harrell FJ, Lee K, Califf R, Pryor D, Rosati R. Regression modelling strategies for improved prognostic prediction. Statistics in Medicine 1984; 3:143-152. DOI: 10.1002/sim.4780030207.
    • (1984) Statistics in Medicine , vol.3 , pp. 143-152
    • Harrell, F.J.1    Lee, K.2    Califf, R.3    Pryor, D.4    Rosati, R.5
  • 42
    • 77958482572 scopus 로고    scopus 로고
    • Visualizing and assessing discrimination in the logistic regression model
    • DOI: 10.1002/sim.3994.
    • Royston P, Altman DG. Visualizing and assessing discrimination in the logistic regression model. Statistics in Medicine 2010; 29(24):2508-2520. DOI: 10.1002/sim.3994.
    • (2010) Statistics in Medicine , vol.29 , Issue.24 , pp. 2508-2520
    • Royston, P.1    Altman, D.G.2
  • 43
    • 0022992740 scopus 로고
    • Meta-analysis in clinical trials
    • DOI: 10.1016/0197-2456(86)90046-2.
    • DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clinical Trials 1986; 7(3):177-188. DOI: 10.1016/0197-2456(86)90046-2.
    • (1986) Controlled Clinical Trials , vol.7 , Issue.3 , pp. 177-188
    • DerSimonian, R.1    Laird, N.2
  • 44
  • 46
    • 0038243037 scopus 로고    scopus 로고
    • Internal and external validation of predictive models: a simulation study of bias and precision in small samples
    • DOI: 10.1016/S0895-4356(03)00047-7.
    • Steyerberg EW, Bleeker SE, Moll HA, Grobbee DE, Moons KGM. Internal and external validation of predictive models: a simulation study of bias and precision in small samples. Journal of Clinical Epidemiology 2003; 56(5):441-447. DOI: 10.1016/S0895-4356(03)00047-7.
    • (2003) Journal of Clinical Epidemiology , vol.56 , Issue.5 , pp. 441-447
    • Steyerberg, E.W.1    Bleeker, S.E.2    Moll, H.A.3    Grobbee, D.E.4    Moons, K.G.M.5
  • 47
    • 17444420853 scopus 로고    scopus 로고
    • Substantial effective sample sizes were required for external validation studies of predictive logistic regression models
    • DOI: 10.1016/j.jclinepi.2004.06.017.
    • Vergouwe Y, Steyerberg EW, Eijkemans MJC, Habbema JDF. Substantial effective sample sizes were required for external validation studies of predictive logistic regression models. Journal of Clinical Epidemiology 2005; 58(5):475-483. DOI: 10.1016/j.jclinepi.2004.06.017.
    • (2005) Journal of Clinical Epidemiology , vol.58 , Issue.5 , pp. 475-483
    • Vergouwe, Y.1    Steyerberg, E.W.2    Eijkemans, M.J.C.3    Habbema, J.D.F.4
  • 48
    • 54349088695 scopus 로고    scopus 로고
    • The performance of risk prediction models
    • DOI: 10.1002/bimj.200810443.
    • Gerds TA, Cai T, Schumacher M. The performance of risk prediction models. Biometrical Journal 2008; 50(4):457-479. DOI: 10.1002/bimj.200810443.
    • (2008) Biometrical Journal , vol.50 , Issue.4 , pp. 457-479
    • Gerds, T.A.1    Cai, T.2    Schumacher, M.3
  • 50
    • 76749097988 scopus 로고    scopus 로고
    • Traditional statistical methods for evaluating prediction models are uninformative as to clinical value: towards a decision analytic framework
    • DOI: 10.1053/j.seminoncol.2009.12.004.
    • Vickers AJ, Cronin AM. Traditional statistical methods for evaluating prediction models are uninformative as to clinical value: towards a decision analytic framework. Seminars in Oncology 2010; 37(1):31-38. DOI: 10.1053/j.seminoncol.2009.12.004.
    • (2010) Seminars in Oncology , vol.37 , Issue.1 , pp. 31-38
    • Vickers, A.J.1    Cronin, A.M.2
  • 51
    • 0023464656 scopus 로고
    • Statistical methods in cancer research. Volume II - the design and analysis of cohort studies
    • Breslow NE, Day NE. Statistical methods in cancer research. Volume II - the design and analysis of cohort studies. IARC Scientific Publications 1987; (82):1-406.
    • (1987) IARC Scientific Publications , vol.2 , Issue.82 , pp. 1-406
    • Breslow, N.E.1    Day, N.E.2
  • 52
    • 0031986072 scopus 로고    scopus 로고
    • Empirical comparisons of proportional hazards, poisson, and logistic regression modeling of occupational cohort data
    • DOI: 10.1002/(SICI)1097-0274(199801)33:1(33::AID-AJIM5)3.0.CO;2-X.
    • Callas PW, Pastides H, Hosmer DW. Empirical comparisons of proportional hazards, poisson, and logistic regression modeling of occupational cohort data. American Journal Of Industrial Medicine 1998; 33(1):33-47. DOI: 10.1002/(SICI)1097-0274(199801)33:1(33::AID-AJIM5)3.0.CO;2-X.
    • (1998) American Journal Of Industrial Medicine , vol.33 , Issue.1 , pp. 33-47
    • Callas, P.W.1    Pastides, H.2    Hosmer, D.W.3
  • 53
    • 0142081912 scopus 로고    scopus 로고
    • Random effects Cox models: a Poisson modelling approach
    • Ma R, Krewski D, Burnett RT. Random effects Cox models: a Poisson modelling approach. Biometrika 2003; 90(1):157-169.
    • (2003) Biometrika , vol.90 , Issue.1 , pp. 157-169
    • Ma, R.1    Krewski, D.2    Burnett, R.T.3
  • 55
    • 84880039037 scopus 로고    scopus 로고
    • Estimating a smooth baseline hazard function for the Cox model. Technical Report, University College London
    • Royston P. Estimating a smooth baseline hazard function for the Cox model. Technical Report, University College London, 2011.
    • (2011)
    • Royston, P.1
  • 56
    • 19944372078 scopus 로고    scopus 로고
    • Generating survival times to simulate Cox proportional hazards models
    • DOI: 10.1002/sim.2059.
    • Bender R, Augustin T, Blettner M. Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine 2005; 24(11):1713-1723. DOI: 10.1002/sim.2059.
    • (2005) Statistics in Medicine , vol.24 , Issue.11 , pp. 1713-1723
    • Bender, R.1    Augustin, T.2    Blettner, M.3
  • 57
    • 0842303548 scopus 로고    scopus 로고
    • Modelling clustered survival data from multicentre clinical trials
    • DOI: 10.1002/sim.1599.
    • Glidden DV, Vittinghoff E. Modelling clustered survival data from multicentre clinical trials. Statistics in Medicine 2004; 23(3):369-388. DOI: 10.1002/sim.1599.
    • (2004) Statistics in Medicine , vol.23 , Issue.3 , pp. 369-388
    • Glidden, D.V.1    Vittinghoff, E.2
  • 58
    • 0037102914 scopus 로고    scopus 로고
    • Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects
    • DOI: 10.1002/sim.1203.
    • Royston P, Parmar MKB. Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Statistics in Medicine 2002; 21(15):2175-2197. DOI: 10.1002/sim.1203.
    • (2002) Statistics in Medicine , vol.21 , Issue.15 , pp. 2175-2197
    • Royston, P.1    Parmar, M.K.B.2
  • 59
    • 80051781370 scopus 로고    scopus 로고
    • Multivariate meta-analysis: potential and promise
    • DOI: 10.1002/sim.4172.
    • Jackson D, Riley R, White IR. Multivariate meta-analysis: potential and promise. Statistics in Medicine 2011; 30(20):2481-2498. DOI: 10.1002/sim.4172.
    • (2011) Statistics in Medicine , vol.30 , Issue.20 , pp. 2481-2498
    • Jackson, D.1    Riley, R.2    White, I.R.3
  • 60
    • 0031160755 scopus 로고    scopus 로고
    • Using regression models for prediction: shrinkage and regression to the mean
    • DOI: 10.1177/096228029700600206.
    • Copas JB. Using regression models for prediction: shrinkage and regression to the mean. Statistical Methods in Medical Research 1997; 6(2):167-183. DOI: 10.1177/096228029700600206.
    • (1997) Statistical Methods in Medical Research , vol.6 , Issue.2 , pp. 167-183
    • Copas, J.B.1
  • 61
    • 0035530911 scopus 로고    scopus 로고
    • Application of shrinkage techniques in logistic regression analysis: a case study
    • DOI: 10.1111/1467-9574.00157.
    • Steyerberg EW, Eijkemans MJC, Habbema JDF. Application of shrinkage techniques in logistic regression analysis: a case study. Statistica Neerlandica 2001; 55(1):76-88. DOI: 10.1111/1467-9574.00157.
    • (2001) Statistica Neerlandica , vol.55 , Issue.1 , pp. 76-88
    • Steyerberg, E.W.1    Eijkemans, M.J.C.2    Habbema, J.D.F.3
  • 62
    • 13644258604 scopus 로고    scopus 로고
    • A comparative study of different shrinkage estimators for panel data models
    • Maddala GS, Li H, Srivastava VK. A comparative study of different shrinkage estimators for panel data models. Annals of Economics and Finance 2001; 2(1):1-30.
    • (2001) Annals of Economics and Finance , vol.2 , Issue.1 , pp. 1-30
    • Maddala, G.S.1    Li, H.2    Srivastava, V.K.3
  • 63
    • 0038507746 scopus 로고    scopus 로고
    • Homogeneous, heterogeneous or shrinkage estimators? Some empirical evidence from French regional gasoline consumption
    • DOI: 10.1007/s00181-003-0161-9.
    • Baltagi BH, Bresson G, Griffin JM, Pirotte A. Homogeneous, heterogeneous or shrinkage estimators? Some empirical evidence from French regional gasoline consumption. Empirical Economics 2003; 28:795-811. DOI: 10.1007/s00181-003-0161-9.
    • (2003) Empirical Economics , vol.28 , pp. 795-811
    • Baltagi, B.H.1    Bresson, G.2    Griffin, J.M.3    Pirotte, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.