메뉴 건너뛰기




Volumn 6, Issue 4, 2015, Pages

Smart colonography for distributed medical databases with Group Kernel Feature Analysis

Author keywords

Computed tomographic colonography; Distributed databases; Group learning; Kernel feature analysis

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER AIDED DIAGNOSIS; COMPUTERIZED TOMOGRAPHY; MEDICAL COMPUTING;

EID: 84938363021     PISSN: 21576904     EISSN: 21576912     Source Type: Journal    
DOI: 10.1145/2668136     Document Type: Article
Times cited : (1)

References (46)
  • 1
    • 0003964363 scopus 로고    scopus 로고
    • American Cancer Society. American Cancer Society.
    • American Cancer Society. 2014. Cancer Facts & Figures 2014. American Cancer Society.
    • (2014) Cancer Facts & Figures 2014
  • 2
    • 80051668109 scopus 로고    scopus 로고
    • A clinical decision support framework for incremental polyps classification in virtual colonoscopy
    • M. Awad, Y. Motai, J. Näppi, and H. Yoshida. 2010. A clinical decision support framework for incremental polyps classification in virtual colonoscopy. Algorithms 3, 1-20.
    • (2010) Algorithms , vol.3 , pp. 1-20
    • Awad, M.1    Motai, Y.2    Näppi, J.3    Yoshida, H.4
  • 3
    • 79952147136 scopus 로고    scopus 로고
    • Mosaic decomposition: An electronic cleansing method for inhomogeneously tagged regions in noncathartic CT colonography
    • 2011
    • C. L. Cai, J. G. Lee, M. E. Zalis, and H. Yoshida. 2011. Mosaic decomposition: An electronic cleansing method for inhomogeneously tagged regions in noncathartic CT colonography. IEEE Transactions on Medical Imaging 30 (2011), 559-570.
    • (2011) IEEE Transactions on Medical Imaging , vol.30 , pp. 559-570
    • Cai, C.L.1    Lee, J.G.2    Zalis, M.E.3    Yoshida, H.4
  • 6
    • 34249337437 scopus 로고    scopus 로고
    • Incremental kernel principal component analysis
    • T. J. Chin and D. Suter. 2007. Incremental kernel principal component analysis. IEEE Transactions on Image Processing 16, 6, 1662-1674.
    • (2007) IEEE Transactions on Image Processing , vol.16 , Issue.6 , pp. 1662-1674
    • Chin, T.J.1    Suter, D.2
  • 8
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • T. Fawcett. 2006. An introduction to ROC analysis. Pattern Recognition Letters 27, 8, 861-874.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 14
    • 84885623290 scopus 로고    scopus 로고
    • Validation of an ontological medical decision support system for patient treatment using a repository of patient data: Insights into the value of machine learning
    • Article 68 (September 2013)
    • A. Khan, J. A. Doucette, and R. Cohen. 2013. Validation of an ontological medical decision support system for patient treatment using a repository of patient data: Insights into the value of machine learning. ACM Transactions on Intelligent Systems Technology 4, 4, Article 68 (September 2013).
    • (2013) ACM Transactions on Intelligent Systems Technology , vol.4 , pp. 4
    • Khan, A.1    Doucette, J.A.2    Cohen, R.3
  • 17
    • 33846996367 scopus 로고    scopus 로고
    • Incremental principal component analysis for image processing
    • Y. Kim. 2007. Incremental principal component analysis for image processing. Optics Letters 32, 1, 32-34.
    • (2007) Optics Letters , vol.32 , Issue.1 , pp. 32-34
    • Kim, Y.1
  • 20
    • 2442471723 scopus 로고    scopus 로고
    • On incremental and robust subspace learning
    • Y. M. Li. 2004. On incremental and robust subspace learning. Pattern Recognition 37, 7, 1509-1518.
    • (2004) Pattern Recognition , vol.37 , Issue.7 , pp. 1509-1518
    • Li, Y.M.1
  • 21
    • 84897584292 scopus 로고    scopus 로고
    • Principal composite kernel feature analysis: Data-dependent kernel approach
    • Y. Motai and H. Yoshida. 2013. Principal composite kernel feature analysis: Data-dependent kernel approach. IEEE Transactions on Knowledge and Data Engineering 25, 8, 1863-1875.
    • (2013) IEEE Transactions on Knowledge and Data Engineering , vol.25 , Issue.8 , pp. 1863-1875
    • Motai, Y.1    Yoshida, H.2
  • 22
    • 0036129342 scopus 로고    scopus 로고
    • Automated detection of polyps in CT colonography: Evaluation of volumetric features for reduction of false positives
    • J. Näppi and H. Yoshida. 2002. Automated detection of polyps in CT colonography: Evaluation of volumetric features for reduction of false positives. Academic Radiology 9, 386-397.
    • (2002) Academic Radiology , vol.9 , pp. 386-397
    • Näppi, J.1    Yoshida, H.2
  • 23
    • 17044457311 scopus 로고    scopus 로고
    • Feature guided analysis for reduction of false positives in CAD of polyps for CT colonography
    • J. Näppi and H. Yoshida. 2003. Feature guided analysis for reduction of false positives in CAD of polyps for CT colonography. Medical Physics 30, 1592-1601.
    • (2003) Medical Physics , vol.30 , pp. 1592-1601
    • Näppi, J.1    Yoshida, H.2
  • 24
    • 33847355213 scopus 로고    scopus 로고
    • Fully automated three-dimensional detection of polyps in fecal-tagging CT colonography
    • March 2007
    • J. Näppi and H. Yoshida. 2007. Fully automated three-dimensional detection of polyps in fecal-tagging CT colonography. Academy of Radiology 14 (March 2007), 287-300.
    • (2007) Academy of Radiology , vol.14 , pp. 287-300
    • Näppi, J.1    Yoshida, H.2
  • 25
    • 49149087192 scopus 로고    scopus 로고
    • Incremental learning of chunk data for online pattern classification systems
    • S. Ozawa, S. Pang, and N. Kasabov. 2008. Incremental learning of chunk data for online pattern classification systems. IEEE Transactions on Neural Networks 19, 6, 1061-1074.
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.6 , pp. 1061-1074
    • Ozawa, S.1    Pang, S.2    Kasabov, N.3
  • 26
    • 0141794694 scopus 로고    scopus 로고
    • Genetic search for optimal ensemble of feature-classifier pairs in DNA gene expression profiles
    • C. Park and S. B. Cho. 2003. Genetic search for optimal ensemble of feature-classifier pairs in DNA gene expression profiles. In Proceedings of the International Joint Conference on Neural Networks. 3, 1702-1707.
    • (2003) Proceedings of the International Joint Conference on Neural Networks , vol.3 , pp. 1702-1707
    • Park, C.1    Cho, S.B.2
  • 28
    • 84879497748 scopus 로고    scopus 로고
    • CAD: How it works, how to use it, performance
    • D. Regge and S. Halligan. 2013. CAD: How it works, how to use it, performance. European Journal of Radiology 82, 1171-1176.
    • (2013) European Journal of Radiology , vol.82 , pp. 1171-1176
    • Regge, D.1    Halligan, S.2
  • 30
    • 78549239198 scopus 로고    scopus 로고
    • Computed tomographic colonography: Ready for prime time?
    • D. C. Rockey. 2010. Computed tomographic colonography: Ready for prime time? Gastroenterology Clinics of North America 39, 901-909.
    • (2010) Gastroenterology Clinics of North America , vol.39 , pp. 901-909
    • Rockey, D.C.1
  • 32
    • 42949100766 scopus 로고    scopus 로고
    • Polarimetric radar target classification using support vector machines
    • F. A. Sadjadi. 2008. Polarimetric radar target classification using support vector machines. Optical Engineering 47, 4.
    • (2008) Optical Engineering , vol.47 , pp. 4
    • Sadjadi, F.A.1
  • 33
    • 33845258041 scopus 로고    scopus 로고
    • Learning with kernels: Support vector machines, regularization, optimization, and beyond
    • MIT Press
    • B. Schölkopf and A. J. Smola. 2002. Learning with kernels: support vector machines, regularization, optimization, and beyond. Adaptive Computation and Machine Learning. MIT Press.
    • (2002) Adaptive Computation and Machine Learning.
    • Schölkopf, B.1    Smola, A.J.2
  • 38
    • 9244257291 scopus 로고    scopus 로고
    • Colonic polyp segmentation in CT colonographybased on fuzzy clustering and deformablemodels
    • J. H. Yao, M. Miller, M. Franaszek, andR.M. Summers. 2004. Colonic polyp segmentation in CT colonographybased on fuzzy clustering and deformablemodels. IEEE Transactions on Medical Imaging 23, 1344-1356.
    • (2004) IEEE Transactions on Medical Imaging , vol.23 , pp. 1344-1356
    • Yao, J.H.1    Miller, M.2    Franaszek, M.3    Summers, R.M.4
  • 40
    • 12844281041 scopus 로고    scopus 로고
    • CAD techniques, challenges and controversies in computed tomographic colonography
    • H. Yoshida and A. H. Dachman. 2005. CAD techniques, challenges and controversies in computed tomographic colonography. Abdominal Imaging 30, 26-41.
    • (2005) Abdominal Imaging , vol.30 , pp. 26-41
    • Yoshida, H.1    Dachman, A.H.2
  • 41
    • 0035544612 scopus 로고    scopus 로고
    • Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps
    • December 2001
    • H. Yoshida and J. Nappi. 2001. Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps. IEEE Transactions on Medical Imaging 20 (December 2001), 1261-1274.
    • (2001) IEEE Transactions on Medical Imaging , vol.20 , pp. 1261-1274
    • Yoshida, H.1    Nappi, J.2
  • 42
    • 34247236067 scopus 로고    scopus 로고
    • CAD in CT colonography without and with fecal tagging: Progress and challenges
    • H. Yoshida and J. Näppi. 2007. CAD in CT colonography without and with fecal tagging: Progress and challenges. Computerized Medical Imaging and Graphics 31, 267-284.
    • (2007) Computerized Medical Imaging and Graphics , vol.31 , pp. 267-284
    • Yoshida, H.1    Näppi, J.2
  • 43
    • 0036156355 scopus 로고    scopus 로고
    • Computerized detection of colonic polyps at CT colonography on the basis of volumetric features: Pilot study
    • H. Yoshida, Y. Masutani, P. MacEneaney, D. Rubin, and A. H. Dachman. 2002. Computerized detection of colonic polyps at CT colonography on the basis of volumetric features: Pilot study. Radiology 222, 327-336.
    • (2002) Radiology , vol.222 , pp. 327-336
    • Yoshida, H.1    Masutani, Y.2    MacEneaney, P.3    Rubin, D.4    Dachman, A.H.5
  • 44
    • 84870841436 scopus 로고    scopus 로고
    • Scalable, high-performance 3D image computing platform: System architecture and application to virtual colonoscopy
    • H. Yoshida, Y. Wu, and W. Cai. 2012. Scalable, high-performance 3D image computing platform: System architecture and application to virtual colonoscopy. In Proceedings of the IEEE Engineering andMedical Biology Society. 3994-3997.
    • (2012) Proceedings of the IEEE Engineering AndMedical Biology Society , pp. 3994-3997
    • Yoshida, H.1    Wu, Y.2    Cai, W.3
  • 45
    • 33746803683 scopus 로고    scopus 로고
    • A novel incremental principal component analysis and its application for face recognition
    • H. T. Zhao, P. C. Yuen, and J. T. Kwok. 2006. A novel incremental principal component analysis and its application for face recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B 36, 4, 873-886.
    • (2006) IEEE Transactions on Systems, Man, and Cybernetics, Part B , vol.36 , Issue.4 , pp. 873-886
    • Zhao, H.T.1    Yuen, P.C.2    Kwok, J.T.3
  • 46
    • 23844545358 scopus 로고    scopus 로고
    • An improved algorithm for kernel principal component analysis
    • W. Zheng, C. Zou, and L. Zhao. 2005. An improved algorithm for kernel principal component analysis. Neural Processing Letters 49-56.
    • (2005) Neural Processing Letters , pp. 49-56
    • Zheng, W.1    Zou, C.2    Zhao, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.