메뉴 건너뛰기




Volumn 20, Issue 2, 2007, Pages 220-229

Efficiently updating and tracking the dominant kernel principal components

Author keywords

Dominant eigenspace; Eigenvalues; Kernel Gram matrix; Large scale data; Prinicipal components; Tracking; Updating

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; COMPUTATIONAL METHODS; FEATURE EXTRACTION; ITERATIVE METHODS; LEARNING SYSTEMS; PRINCIPAL COMPONENT ANALYSIS;

EID: 33847205368     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2006.09.012     Document Type: Article
Times cited : (44)

References (24)
  • 3
    • 33847192664 scopus 로고    scopus 로고
    • Blake, C., & Merz, C. (1998). UCI repository of machine learning databases. URL http://www.ics.uci.edu/~mlearn/MLRepository.html
  • 4
    • 34250270918 scopus 로고
    • Updating the singular value decomposition
    • Bunch J.R., and Nielsen J.P. Updating the singular value decomposition. Numerische Mathematik 31 (1978) 111-129
    • (1978) Numerische Mathematik , vol.31 , pp. 111-129
    • Bunch, J.R.1    Nielsen, J.P.2
  • 5
    • 33847182256 scopus 로고    scopus 로고
    • Businger, P. (1970). Updating a singular value decomposition. BIT 10. pp. 376-385
  • 10
    • 33847201314 scopus 로고    scopus 로고
    • Kim, K. I., Franz, M., & Schölkopf, B. (2003). Kernel Hebbian algorithm for iterative kernel principal component analysis. Tech. rep. 109. Tübingen: Max-Planck-Institut für biologische Kybernetik
  • 11
    • 85178271513 scopus 로고    scopus 로고
    • Kuh, A. (2001). Adaptive kernel methods for CDMA systems. In Proc. of the international joint conference on neural networks (pp. 1404-1409)
  • 15
    • 0006019710 scopus 로고    scopus 로고
    • An expectation-maximization approach to nonlinear component analysis
    • Rosipal R., and Girolami M. An expectation-maximization approach to nonlinear component analysis. Neural Computation 13 3 (2001) 505-510
    • (2001) Neural Computation , vol.13 , Issue.3 , pp. 505-510
    • Rosipal, R.1    Girolami, M.2
  • 16
    • 0035561486 scopus 로고    scopus 로고
    • Kernel PCA for feature extraction and de-noising in nonlinear regression
    • Rosipal R., Girolami M., Trejo L., and Cichocki A. Kernel PCA for feature extraction and de-noising in nonlinear regression. Neural Computing & Applications 10 3 (2001) 231-243
    • (2001) Neural Computing & Applications , vol.10 , Issue.3 , pp. 231-243
    • Rosipal, R.1    Girolami, M.2    Trejo, L.3    Cichocki, A.4
  • 18
    • 0001836232 scopus 로고    scopus 로고
    • Kernel PCA pattern reconstruction via approximate pre-images
    • Niklasson L., ~ M.B., and Ziemke T. (Eds), Springer, Berlin, Germany
    • Schölkopf B., Mika S., Smola A., Rätsch G., and Müller K. Kernel PCA pattern reconstruction via approximate pre-images. In: Niklasson L., ~ M.B., and Ziemke T. (Eds). Perspectives in neural computing (1998), Springer, Berlin, Germany 147-152
    • (1998) Perspectives in neural computing , pp. 147-152
    • Schölkopf, B.1    Mika, S.2    Smola, A.3    Rätsch, G.4    Müller, K.5
  • 20
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B., Smola A., and Müller K. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10 5 (1998) 1299-1319
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.3
  • 22
    • 0037209489 scopus 로고    scopus 로고
    • The use of kernel principal component analysis to model data distributions
    • Twining C.J., and Taylor C.J. The use of kernel principal component analysis to model data distributions. Pattern Recognition 36 1 (2003) 217-227
    • (2003) Pattern Recognition , vol.36 , Issue.1 , pp. 217-227
    • Twining, C.J.1    Taylor, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.