메뉴 건너뛰기




Volumn 34, Issue 21, 2015, Pages 2926-2940

Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome

Author keywords

Heterogeneity Q test; I2 index; Instrumental variables; Mendelian randomisation; Pleiotropy

Indexed keywords

GLUCOSE;

EID: 84938292262     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.6522     Document Type: Article
Times cited : (805)

References (40)
  • 1
    • 0037322022 scopus 로고    scopus 로고
    • 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease
    • Davey-Smith G, Ebrahim S. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease. International Journal of Epidemiology 2003; 32:1-22.
    • (2003) International Journal of Epidemiology , vol.32 , pp. 1-22
    • Davey-Smith, G.1    Ebrahim, S.2
  • 5
    • 34547682094 scopus 로고    scopus 로고
    • Mendelian randomization as an instrumental variable approach to causal inference
    • Didelez V, Sheehan N. Mendelian randomization as an instrumental variable approach to causal inference. Statistical Methods in Medical Research 2007; 16:309-330.
    • (2007) Statistical Methods in Medical Research , vol.16 , pp. 309-330
    • Didelez, V.1    Sheehan, N.2
  • 6
  • 7
    • 77957778209 scopus 로고    scopus 로고
    • Assumptions of IV methods for observational epidemiology
    • Didelez V, Meng S, Sheehan N. Assumptions of IV methods for observational epidemiology. Statistical Science 2010; 25:22-40.
    • (2010) Statistical Science , vol.25 , pp. 22-40
    • Didelez, V.1    Meng, S.2    Sheehan, N.3
  • 8
    • 84871768280 scopus 로고
    • Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak
    • Bound J, Jaeger D, Baker R. Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak. Journal of the American Statistical Association 1995; 90:443-450.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 443-450
    • Bound, J.1    Jaeger, D.2    Baker, R.3
  • 10
    • 79961185600 scopus 로고    scopus 로고
    • Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants
    • Pierce B, Ahsan H, VanderWeele T. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. International Journal of Epidemiology 2011; 40:740-752.
    • (2011) International Journal of Epidemiology , vol.40 , pp. 740-752
    • Pierce, B.1    Ahsan, H.2    VanderWeele, T.3
  • 11
    • 79961199881 scopus 로고    scopus 로고
    • Commentary:can 'many weak' instruments ever be 'strong'?
    • Sheehan NA, Didelez V. Commentary:can 'many weak' instruments ever be 'strong'?. International Journal of Epidemiology 2011; 40(3): 752-754.
    • (2011) International Journal of Epidemiology , vol.40 , Issue.3 , pp. 752-754
    • Sheehan, N.A.1    Didelez, V.2
  • 13
    • 0001755034 scopus 로고
    • The estimation of economic relationships using instrumental variables
    • Sargan JD. The estimation of economic relationships using instrumental variables. Econometrica 1958; 26:393-415.
    • (1958) Econometrica , vol.26 , pp. 393-415
    • Sargan, J.D.1
  • 14
    • 41049093347 scopus 로고
    • The combination of estimates from different experiments
    • Cochran WG. The combination of estimates from different experiments. Biometrics 1954; 10:101-129.
    • (1954) Biometrics , vol.10 , pp. 101-129
    • Cochran, W.G.1
  • 15
    • 0032580372 scopus 로고    scopus 로고
    • Detecting and describing heterogeneity in meta-analysis
    • Hardy RJ, Thompson SG. Detecting and describing heterogeneity in meta-analysis. Statistics in Medicine 1998; 17:841-856.
    • (1998) Statistics in Medicine , vol.17 , pp. 841-856
    • Hardy, R.J.1    Thompson, S.G.2
  • 16
    • 0037098199 scopus 로고    scopus 로고
    • Quantifying heterogeneity in a meta-analysis
    • Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine 2002; 21:1539-1558.
    • (2002) Statistics in Medicine , vol.21 , pp. 1539-1558
    • Higgins, J.P.1    Thompson, S.G.2
  • 18
    • 33747071747 scopus 로고    scopus 로고
    • Estimation of bias in nongenetic observational studies using "mendelian triangulation"
    • Bautista LE, Smeeth L, Hingorani AD, Casas JP. Estimation of bias in nongenetic observational studies using "mendelian triangulation". Annals of Epidemiology 2006; 16:675-680.
    • (2006) Annals of Epidemiology , vol.16 , pp. 675-680
    • Bautista, L.E.1    Smeeth, L.2    Hingorani, A.D.3    Casas, J.P.4
  • 19
    • 34250655804 scopus 로고    scopus 로고
    • Re: estimation of bias in nongenetic observational studies using "mendelian triangulation"
    • by Bautista
    • Thomas DC, Lawlor DA, Thompson JR. Re: estimation of bias in nongenetic observational studies using "mendelian triangulation" by Bautista et al. Annals of Epidemiology 2007; 17:511-513.
    • (2007) Annals of Epidemiology , vol.17 , pp. 511-513
    • Thomas, D.C.1    Lawlor, D.A.2    Thompson, J.R.3
  • 20
    • 80053907554 scopus 로고    scopus 로고
    • Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk
    • Ehret G (The International Consortium for Blood Pressure Genome-wide Association Studies) . Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011; 478:103-109.
    • (2011) Nature , vol.478 , pp. 103-109
    • Ehret, G.1
  • 21
    • 84885840876 scopus 로고    scopus 로고
    • Mendelian randomization analysis with multiple genetic variants using summarized data
    • Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genetic Epidemiology 2013; 37:658-665.
    • (2013) Genetic Epidemiology , vol.37 , pp. 658-665
    • Burgess, S.1    Butterworth, A.2    Thompson, S.G.3
  • 24
    • 0035892613 scopus 로고    scopus 로고
    • Approaches to heterogeneity in meta-analyses
    • Petitti DB. Approaches to heterogeneity in meta-analyses. Statistics in Medicine 2001; 20:3625-3633.
    • (2001) Statistics in Medicine , vol.20 , pp. 3625-3633
    • Petitti, D.B.1
  • 27
    • 84890343359 scopus 로고    scopus 로고
    • Birth weight and fasting glucose and insulin levels: results from the Aboriginal Birth Cohort Study
    • Sayers SM, Mott SA, Mann KD, Pearce MS, Singh GR. Birth weight and fasting glucose and insulin levels: results from the Aboriginal Birth Cohort Study. Medical Journal of Australia 2013; 199:112-116.
    • (2013) Medical Journal of Australia , vol.199 , pp. 112-116
    • Sayers, S.M.1    Mott, S.A.2    Mann, K.D.3    Pearce, M.S.4    Singh, G.R.5
  • 37
    • 35948951588 scopus 로고    scopus 로고
    • Uncertainty in heterogeneity estimates in meta-analysis
    • Ioannidis JP, Patsopoulos NA, Evangelou E. Uncertainty in heterogeneity estimates in meta-analysis. BMJ 2007a; 335:914-916.
    • (2007) BMJ , vol.335 , pp. 914-916
    • Ioannidis, J.P.1    Patsopoulos, N.A.2    Evangelou, E.3
  • 38
    • 41049087605 scopus 로고    scopus 로고
    • Heterogeneity in meta-analyses of genome-wide association investigations
    • Ioannidis JP, Patsopoulos NA, Evangelou E. Heterogeneity in meta-analyses of genome-wide association investigations. Plos One 2007b; 2:e841.
    • (2007) Plos One , vol.2 , pp. e841
    • Ioannidis, J.P.1    Patsopoulos, N.A.2    Evangelou, E.3
  • 39
    • 33845873917 scopus 로고    scopus 로고
    • A simulation study comparing properties of heterogeneity measures in meta-analysis
    • Mittlböck M, Heinzl H. A simulation study comparing properties of heterogeneity measures in meta-analysis. Statistics in Medicine 2010; 37:4321-4333.
    • (2010) Statistics in Medicine , vol.37 , pp. 4321-4333
    • Mittlböck, M.1    Heinzl, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.