메뉴 건너뛰기




Volumn 32, Issue , 2015, Pages 82-85

RNA-directed repair of DNA double-strand breaks

Author keywords

DiRNA; DNA damage response; DNA repair; Double strand break; MicroRNA; RNA

Indexed keywords

COMPLEMENTARY DNA; DOUBLE STRANDED DNA; LONG UNTRANSLATED RNA; MESSENGER RNA; MICRORNA; RIBONUCLEASE; RNA; RNA INDUCED SILENCING COMPLEX; SMALL UNTRANSLATED RNA; ARGONAUTE PROTEIN; DNA; EIF2C2 PROTEIN, HUMAN; RAD51 PROTEIN; RAD51 PROTEIN, HUMAN; RAD52 PROTEIN; RAD52 PROTEIN, HUMAN; RNA POLYMERASE II;

EID: 84938206786     PISSN: 15687864     EISSN: 15687856     Source Type: Journal    
DOI: 10.1016/j.dnarep.2015.04.017     Document Type: Article
Times cited : (26)

References (70)
  • 1
    • 84880586724 scopus 로고    scopus 로고
    • DNA repair mechanisms in dividing and non-dividing cells
    • Iyama T., Wilson D.M. DNA repair mechanisms in dividing and non-dividing cells. DNA Repair (Amst.) 2013, 12(8):620-636.
    • (2013) DNA Repair (Amst.) , vol.12 , Issue.8 , pp. 620-636
    • Iyama, T.1    Wilson, D.M.2
  • 2
    • 84878616847 scopus 로고    scopus 로고
    • DNA double strand break repair: a radiation perspective
    • Kavanagh J.N., et al. DNA double strand break repair: a radiation perspective. Antioxid. Redox Signal. 2013, 18(18):2458-2472.
    • (2013) Antioxid. Redox Signal. , vol.18 , Issue.18 , pp. 2458-2472
    • Kavanagh, J.N.1
  • 3
    • 0034437911 scopus 로고    scopus 로고
    • Double-strand break repair in human cells
    • West S.C., et al. Double-strand break repair in human cells. Cold Spring Harb. Symp. Quant. Biol. 2000, 65:315-321.
    • (2000) Cold Spring Harb. Symp. Quant. Biol. , vol.65 , pp. 315-321
    • West, S.C.1
  • 4
    • 84875207723 scopus 로고    scopus 로고
    • Chromatin movement in the maintenance of genome stability
    • Dion V., Gasser S.M. Chromatin movement in the maintenance of genome stability. Cell 2013, 152(6):1355-1364.
    • (2013) Cell , vol.152 , Issue.6 , pp. 1355-1364
    • Dion, V.1    Gasser, S.M.2
  • 5
    • 84919390877 scopus 로고    scopus 로고
    • The role of double-strand break repair pathways at functional and dysfunctional telomeres
    • Doksani Y., de Lange T. The role of double-strand break repair pathways at functional and dysfunctional telomeres. Cold Spring Harb. Perspect. Biol. 2014, 6(12).
    • (2014) Cold Spring Harb. Perspect. Biol. , vol.6 , Issue.12
    • Doksani, Y.1    de Lange, T.2
  • 6
    • 84886950583 scopus 로고    scopus 로고
    • Mammalian DNA repair: HATs and HDACs make their mark through histone acetylation
    • Gong F., Miller K.M. Mammalian DNA repair: HATs and HDACs make their mark through histone acetylation. Mutat. Res. 2013, 750(1-2):23-30.
    • (2013) Mutat. Res. , vol.750 , Issue.1-2 , pp. 23-30
    • Gong, F.1    Miller, K.M.2
  • 7
    • 84878373820 scopus 로고    scopus 로고
    • The repair and signaling responses to DNA double-strand breaks
    • Goodarzi A.A., Jeggo P.A. The repair and signaling responses to DNA double-strand breaks. Adv. Genet. 2013, 82:1-45.
    • (2013) Adv. Genet. , vol.82 , pp. 1-45
    • Goodarzi, A.A.1    Jeggo, P.A.2
  • 8
    • 84875198804 scopus 로고    scopus 로고
    • Chromatin remodeling at DNA double-strand breaks
    • Price B.D., D'Andrea A.D. Chromatin remodeling at DNA double-strand breaks. Cell 2013, 152(6):1344-1354.
    • (2013) Cell , vol.152 , Issue.6 , pp. 1344-1354
    • Price, B.D.1    D'Andrea, A.D.2
  • 9
    • 84887015356 scopus 로고    scopus 로고
    • Ionizing-radiation induced DNA double-strand breaks: a direct and indirect lighting up
    • Vignard J., Mirey G., Salles B. Ionizing-radiation induced DNA double-strand breaks: a direct and indirect lighting up. Radiother. Oncol. 2013, 108(3):362-369.
    • (2013) Radiother. Oncol. , vol.108 , Issue.3 , pp. 362-369
    • Vignard, J.1    Mirey, G.2    Salles, B.3
  • 10
    • 84894324435 scopus 로고    scopus 로고
    • A direct role for small non-coding RNAs in DNA damage response
    • d'Adda di Fagagna F. A direct role for small non-coding RNAs in DNA damage response. Trends Cell Biol. 2014, 24(3):171-178.
    • (2014) Trends Cell Biol. , vol.24 , Issue.3 , pp. 171-178
    • d'Adda di Fagagna, F.1
  • 11
    • 84884974250 scopus 로고    scopus 로고
    • Small RNAs: emerging key players in DNA double-strand break repair
    • Ba Z., Qi Y. Small RNAs: emerging key players in DNA double-strand break repair. Sci. China Life Sci. 2013, 56(10):933-936.
    • (2013) Sci. China Life Sci. , vol.56 , Issue.10 , pp. 933-936
    • Ba, Z.1    Qi, Y.2
  • 12
    • 80052391165 scopus 로고    scopus 로고
    • MiRNA response to DNA damage
    • Wan G., et al. miRNA response to DNA damage. Trends Biochem. Sci. 2011, 36(9):478-484.
    • (2011) Trends Biochem. Sci. , vol.36 , Issue.9 , pp. 478-484
    • Wan, G.1
  • 13
    • 84911500734 scopus 로고    scopus 로고
    • Transcript-RNA-templated DNA. recombination and repair
    • Keskin H., et al. Transcript-RNA-templated DNA. recombination and repair. Nature 2014, 515(7527):436-439.
    • (2014) Nature , vol.515 , Issue.7527 , pp. 436-439
    • Keskin, H.1
  • 14
    • 84899924043 scopus 로고    scopus 로고
    • DiRNA-Ago2-RAD51 complexes at double-strand break sites
    • Yamanaka S., Siomi H. diRNA-Ago2-RAD51 complexes at double-strand break sites. Cell Res. 2014, 24(5):511-512.
    • (2014) Cell Res. , vol.24 , Issue.5 , pp. 511-512
    • Yamanaka, S.1    Siomi, H.2
  • 15
    • 84911135072 scopus 로고    scopus 로고
    • Targeting the microRNA-regulating DNA damage/repair pathways in cancer
    • Bottai G., et al. Targeting the microRNA-regulating DNA damage/repair pathways in cancer. Expert Opin. Biol. Ther. 2014, 14(11):1667-1683.
    • (2014) Expert Opin. Biol. Ther. , vol.14 , Issue.11 , pp. 1667-1683
    • Bottai, G.1
  • 16
    • 84890116498 scopus 로고    scopus 로고
    • MicroRNAs as therapeutic targets in chemoresistance
    • Garofalo M., Croce C.M. MicroRNAs as therapeutic targets in chemoresistance. Drug Resist. Updates 2013, 16(3-5):47-59.
    • (2013) Drug Resist. Updates , vol.16 , Issue.3-5 , pp. 47-59
    • Garofalo, M.1    Croce, C.M.2
  • 17
    • 84865024537 scopus 로고    scopus 로고
    • Crosstalk between the DNA damage response pathway and microRNAs
    • Han C., et al. Crosstalk between the DNA damage response pathway and microRNAs. Cell Mol. Life Sci. 2012, 69(17):2895-2906.
    • (2012) Cell Mol. Life Sci. , vol.69 , Issue.17 , pp. 2895-2906
    • Han, C.1
  • 18
    • 79954459249 scopus 로고    scopus 로고
    • MiR-15 and miR-16 are direct transcriptional targets of E2F1 that limit E2F-induced proliferation by targeting cyclin E
    • Ofir M., Hacohen D., Ginsberg D. MiR-15 and miR-16 are direct transcriptional targets of E2F1 that limit E2F-induced proliferation by targeting cyclin E. Mol. Cancer Res. 2011, 9(4):440-447.
    • (2011) Mol. Cancer Res. , vol.9 , Issue.4 , pp. 440-447
    • Ofir, M.1    Hacohen, D.2    Ginsberg, D.3
  • 19
    • 70350214454 scopus 로고    scopus 로고
    • MicroRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells
    • Wang P., et al. microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res. 2009, 69(20):8157-8165.
    • (2009) Cancer Res. , vol.69 , Issue.20 , pp. 8157-8165
    • Wang, P.1
  • 20
    • 68149137764 scopus 로고    scopus 로고
    • Regulation of the cell cycle gene: BTG2, by miR-21 in human laryngeal carcinoma
    • Liu M., et al. Regulation of the cell cycle gene: BTG2, by miR-21 in human laryngeal carcinoma. Cell Res. 2009, 19(7):828-837.
    • (2009) Cell Res. , vol.19 , Issue.7 , pp. 828-837
    • Liu, M.1
  • 21
    • 84901635810 scopus 로고    scopus 로고
    • P53/microRNA-34-induced metabolic regulation: new opportunities in anticancer therapy
    • Zhang D.G., Zheng J.N., Pei D.S. P53/microRNA-34-induced metabolic regulation: new opportunities in anticancer therapy. Mol. Cancer 2014, 13:115.
    • (2014) Mol. Cancer , vol.13 , pp. 115
    • Zhang, D.G.1    Zheng, J.N.2    Pei, D.S.3
  • 22
    • 70449727085 scopus 로고    scopus 로고
    • Analysis of microRNA expression profiles during the cell cycle in synchronized HeLa cells
    • Zhou J.Y., et al. Analysis of microRNA expression profiles during the cell cycle in synchronized HeLa cells. BMB Rep. 2009, 42(9):593-598.
    • (2009) BMB Rep. , vol.42 , Issue.9 , pp. 593-598
    • Zhou, J.Y.1
  • 23
    • 84876272195 scopus 로고    scopus 로고
    • Let-7: a regulator of the ERalpha signaling pathway in human breast tumors and breast cancer stem cells
    • Sun X., et al. Let-7: a regulator of the ERalpha signaling pathway in human breast tumors and breast cancer stem cells. Oncol. Rep. 2013, 29(5):2079-2087.
    • (2013) Oncol. Rep. , vol.29 , Issue.5 , pp. 2079-2087
    • Sun, X.1
  • 24
    • 70349895582 scopus 로고    scopus 로고
    • Hypoxia-mediated regulation of Cdc25A phosphatase by p21 and miR-21
    • de Oliveira P.E., et al. Hypoxia-mediated regulation of Cdc25A phosphatase by p21 and miR-21. Cell Cycle 2009, 8(19):3157-3164.
    • (2009) Cell Cycle , vol.8 , Issue.19 , pp. 3157-3164
    • de Oliveira, P.E.1
  • 25
    • 84907222766 scopus 로고    scopus 로고
    • MiR-15b/16-2 regulates factors that promote p53 phosphorylation and augments the DNA damage response following radiation in the lung
    • Rahman M., et al. miR-15b/16-2 regulates factors that promote p53 phosphorylation and augments the DNA damage response following radiation in the lung. J. Biol. Chem. 2014, 289(38):26406-26416.
    • (2014) J. Biol. Chem. , vol.289 , Issue.38 , pp. 26406-26416
    • Rahman, M.1
  • 26
    • 77956896318 scopus 로고    scopus 로고
    • Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway
    • Zhang X., et al. Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway. Cancer Res. 2010, 70(18):7176-7186.
    • (2010) Cancer Res. , vol.70 , Issue.18 , pp. 7176-7186
    • Zhang, X.1
  • 27
    • 78449297894 scopus 로고    scopus 로고
    • The guardians of the genome (p53: TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network
    • Boominathan L. The guardians of the genome (p53: TA-p73, and TA-p63) are regulators of tumor suppressor miRNAs network. Cancer Metastasis Rev. 2010, 29(4):613-639.
    • (2010) Cancer Metastasis Rev. , vol.29 , Issue.4 , pp. 613-639
    • Boominathan, L.1
  • 28
    • 84860319933 scopus 로고    scopus 로고
    • MiRNA-34 intrinsically links p53 tumor suppressor and Wnt signaling
    • Cha Y.H., et al. MiRNA-34 intrinsically links p53 tumor suppressor and Wnt signaling. Cell Cycle 2012, 11(7):1273-1281.
    • (2012) Cell Cycle , vol.11 , Issue.7 , pp. 1273-1281
    • Cha, Y.H.1
  • 29
    • 34249817549 scopus 로고    scopus 로고
    • Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis
    • Chang T.C., et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 2007, 26(5):745-752.
    • (2007) Mol. Cell , vol.26 , Issue.5 , pp. 745-752
    • Chang, T.C.1
  • 30
    • 34250851115 scopus 로고    scopus 로고
    • A microRNA component of the p53 tumour suppressor network
    • He L., et al. A microRNA component of the p53 tumour suppressor network. Nature 2007, 447(7148):1130-1134.
    • (2007) Nature , vol.447 , Issue.7148 , pp. 1130-1134
    • He, L.1
  • 31
    • 84877979327 scopus 로고    scopus 로고
    • P53 regulates nuclear GSK-3 levels through miR-34-mediated Axin2 suppression in colorectal cancer cells
    • Kim N.H., et al. p53 regulates nuclear GSK-3 levels through miR-34-mediated Axin2 suppression in colorectal cancer cells. Cell Cycle 2013, 12(10):1578-1587.
    • (2013) Cell Cycle , vol.12 , Issue.10 , pp. 1578-1587
    • Kim, N.H.1
  • 32
    • 84898882553 scopus 로고    scopus 로고
    • Let-7g microRNA sensitizes fluorouracil-resistant human hepatoma cells
    • Tang H., et al. Let-7g microRNA sensitizes fluorouracil-resistant human hepatoma cells. Pharmazie 2014, 69(4):287-292.
    • (2014) Pharmazie , vol.69 , Issue.4 , pp. 287-292
    • Tang, H.1
  • 33
    • 80053018047 scopus 로고    scopus 로고
    • Lysine-specific demethylase 2B (KDM2B)-let-7-enhancer of zester homolog 2 (EZH2) pathway regulates cell cycle progression and senescence in primary cells
    • Tzatsos A., et al. Lysine-specific demethylase 2B (KDM2B)-let-7-enhancer of zester homolog 2 (EZH2) pathway regulates cell cycle progression and senescence in primary cells. J. Biol. Chem. 2011, 286(38):33061-33069.
    • (2011) J. Biol. Chem. , vol.286 , Issue.38 , pp. 33061-33069
    • Tzatsos, A.1
  • 34
    • 34548012848 scopus 로고    scopus 로고
    • The let-7 microRNA represses cell proliferation pathways in human cells
    • Johnson C.D., et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res. 2007, 67(16):7713-7722.
    • (2007) Cancer Res. , vol.67 , Issue.16 , pp. 7713-7722
    • Johnson, C.D.1
  • 35
    • 69949098536 scopus 로고    scopus 로고
    • MiR-24 Inhibits cell proliferation by targeting E2F2: MYC, and other cell-cycle genes via binding to seedless 3'UTR microRNA recognition elements
    • Lal A., et al. miR-24 Inhibits cell proliferation by targeting E2F2: MYC, and other cell-cycle genes via binding to seedless 3'UTR microRNA recognition elements. Mol. Cell 2009, 35(5):610-625.
    • (2009) Mol. Cell , vol.35 , Issue.5 , pp. 610-625
    • Lal, A.1
  • 36
    • 84863484585 scopus 로고    scopus 로고
    • Perk-dependent repression of miR-106b-25 cluster is required for ER stress-induced apoptosis
    • Gupta S., et al. Perk-dependent repression of miR-106b-25 cluster is required for ER stress-induced apoptosis. Cell Death Dis. 2012, 3:pe333.
    • (2012) Cell Death Dis. , vol.3 , pp. pe333
    • Gupta, S.1
  • 37
    • 77952392153 scopus 로고    scopus 로고
    • MiR-17: miR-19b, miR-20a, and miR-106a are down-regulated in human aging
    • Hackl M., et al. miR-17: miR-19b, miR-20a, and miR-106a are down-regulated in human aging. Aging Cell 2010, 9(2):291-296.
    • (2010) Aging Cell , vol.9 , Issue.2 , pp. 291-296
    • Hackl, M.1
  • 38
    • 84890277215 scopus 로고    scopus 로고
    • Defective regulation of microRNA target genes in myoblasts from facioscapulohumeral dystrophy patients
    • Dmitriev P., et al. Defective regulation of microRNA target genes in myoblasts from facioscapulohumeral dystrophy patients. J. Biol. Chem. 2013, 288(49):34989-35002.
    • (2013) J. Biol. Chem. , vol.288 , Issue.49 , pp. 34989-35002
    • Dmitriev, P.1
  • 39
    • 84874668158 scopus 로고    scopus 로고
    • The miR-99 family regulates the DNA damage response through its target SNF2H
    • Mueller A.C., Sun D., Dutta A. The miR-99 family regulates the DNA damage response through its target SNF2H. Oncogene 2013, 32(9):1164-1172.
    • (2013) Oncogene , vol.32 , Issue.9 , pp. 1164-1172
    • Mueller, A.C.1    Sun, D.2    Dutta, A.3
  • 40
    • 41149101523 scopus 로고    scopus 로고
    • MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression
    • Ivanovska I., et al. MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol. Cell Biol. 2008, 28(7):2167-2174.
    • (2008) Mol. Cell Biol. , vol.28 , Issue.7 , pp. 2167-2174
    • Ivanovska, I.1
  • 41
    • 79251645618 scopus 로고    scopus 로고
    • MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC
    • Trompeter H.I., et al. MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC. PLoS One 2011, 6(1):e16138.
    • (2011) PLoS One , vol.6 , Issue.1 , pp. e16138
    • Trompeter, H.I.1
  • 42
    • 80755140088 scopus 로고    scopus 로고
    • MiR-106a inhibits glioma cell growth by targeting E2F1 independent of p53 status
    • Yang G., et al. MiR-106a inhibits glioma cell growth by targeting E2F1 independent of p53 status. J. Mol. Med. (Berl.) 2011, 89(10):1037-1050.
    • (2011) J. Mol. Med. (Berl.) , vol.89 , Issue.10 , pp. 1037-1050
    • Yang, G.1
  • 43
    • 77953001817 scopus 로고    scopus 로고
    • Aurora kinase A induces miR-17-92 cluster through regulation of E2F1 transcription factor
    • He S., et al. Aurora kinase A induces miR-17-92 cluster through regulation of E2F1 transcription factor. Cell Mol. Life Sci. 2010, 67(12):2069-2076.
    • (2010) Cell Mol. Life Sci. , vol.67 , Issue.12 , pp. 2069-2076
    • He, S.1
  • 44
    • 51549115859 scopus 로고    scopus 로고
    • The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition
    • Cloonan N., et al. The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition. Genome Biol. 2008, 9(8):R127.
    • (2008) Genome Biol. , vol.9 , Issue.8 , pp. R127
    • Cloonan, N.1
  • 45
    • 84883627256 scopus 로고    scopus 로고
    • The DNA-damage response to gamma-radiation is affected by miR-27a in A549 cells
    • Di Francesco A., et al. The DNA-damage response to gamma-radiation is affected by miR-27a in A549 cells. Int. J. Mol. Sci. 2013, 14(9):17881-17896.
    • (2013) Int. J. Mol. Sci. , vol.14 , Issue.9 , pp. 17881-17896
    • Di Francesco, A.1
  • 46
    • 84878505440 scopus 로고    scopus 로고
    • ATM-dependent MiR-335 targets CtIP and modulates the DNA damage response
    • Martin N.T., et al. ATM-dependent MiR-335 targets CtIP and modulates the DNA damage response. PLoS Genet. 2013, 9(5):e1003505.
    • (2013) PLoS Genet. , vol.9 , Issue.5 , pp. e1003505
    • Martin, N.T.1
  • 47
    • 77958133262 scopus 로고    scopus 로고
    • Targeting DNA-PKcs and ATM with miR-101 sensitizes tumors to radiation
    • Yan D., et al. Targeting DNA-PKcs and ATM with miR-101 sensitizes tumors to radiation. PLoS One 2010, 5(7):e11397.
    • (2010) PLoS One , vol.5 , Issue.7 , pp. e11397
    • Yan, D.1
  • 48
    • 84895073874 scopus 로고    scopus 로고
    • MicroRNA-124 (miR-124) regulates Ku70 expression and is correlated with neuronal death induced by ischemia/reperfusion
    • Zhu F., et al. MicroRNA-124 (miR-124) regulates Ku70 expression and is correlated with neuronal death induced by ischemia/reperfusion. J. Mol. Neurosci. 2014, 52(1):148-155.
    • (2014) J. Mol. Neurosci. , vol.52 , Issue.1 , pp. 148-155
    • Zhu, F.1
  • 49
    • 81855193960 scopus 로고    scopus 로고
    • Radiosensitizing effects of ectopic miR-101 on non-small-cell lung cancer cells depend on the endogenous miR-101 level
    • Chen S., et al. Radiosensitizing effects of ectopic miR-101 on non-small-cell lung cancer cells depend on the endogenous miR-101 level. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81(5):1524-1529.
    • (2011) Int. J. Radiat. Oncol. Biol. Phys. , vol.81 , Issue.5 , pp. 1524-1529
    • Chen, S.1
  • 50
    • 80051975920 scopus 로고    scopus 로고
    • MicroRNA-138 modulates DNA damage response by repressing histone H2AX expression
    • Wang Y., et al. MicroRNA-138 modulates DNA damage response by repressing histone H2AX expression. Mol. Cancer Res. 2011, 9(8):1100-1111.
    • (2011) Mol. Cancer Res. , vol.9 , Issue.8 , pp. 1100-1111
    • Wang, Y.1
  • 51
    • 66149157349 scopus 로고    scopus 로고
    • MiR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells
    • Lal A., et al. miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat. Struct. Mol. Biol. 2009, 16(5):492-498.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , Issue.5 , pp. 492-498
    • Lal, A.1
  • 52
    • 84872576566 scopus 로고    scopus 로고
    • MicroRNA-182-5p targets a network of genes involved in DNA repair
    • Krishnan K., et al. MicroRNA-182-5p targets a network of genes involved in DNA repair. RNA 2013, 19(2):230-242.
    • (2013) RNA , vol.19 , Issue.2 , pp. 230-242
    • Krishnan, K.1
  • 53
    • 78651468714 scopus 로고    scopus 로고
    • MiR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors
    • Moskwa P., et al. miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol. Cell 2011, 41(2):210-220.
    • (2011) Mol. Cell , vol.41 , Issue.2 , pp. 210-220
    • Moskwa, P.1
  • 54
    • 84865135512 scopus 로고    scopus 로고
    • MiR-96 downregulates REV1 and RAD51 to promote cellular sensitivity to cisplatin and PARP inhibition
    • Wang Y., et al. MiR-96 downregulates REV1 and RAD51 to promote cellular sensitivity to cisplatin and PARP inhibition. Cancer Res. 2012, 72(16):4037-4046.
    • (2012) Cancer Res. , vol.72 , Issue.16 , pp. 4037-4046
    • Wang, Y.1
  • 55
    • 53349120042 scopus 로고    scopus 로고
    • A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis
    • Shen J., et al. A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis 2008, 29(10):1963-1966.
    • (2008) Carcinogenesis , vol.29 , Issue.10 , pp. 1963-1966
    • Shen, J.1
  • 56
    • 84880132922 scopus 로고    scopus 로고
    • MLH1 as a direct target of MiR-155 and a potential predictor of favorable prognosis in pancreatic cancer
    • Liu W.J., et al. MLH1 as a direct target of MiR-155 and a potential predictor of favorable prognosis in pancreatic cancer. J. Gastrointest. Surg. 2013, 17(8):1399-1405.
    • (2013) J. Gastrointest. Surg. , vol.17 , Issue.8 , pp. 1399-1405
    • Liu, W.J.1
  • 57
    • 77951030494 scopus 로고    scopus 로고
    • Modulation of mismatch repair and genomic stability by miR-155
    • Valeri N., et al. Modulation of mismatch repair and genomic stability by miR-155. Proc. Natl. Acad. Sci. U. S. A. 2010, 107(15):6982-6987.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , Issue.15 , pp. 6982-6987
    • Valeri, N.1
  • 58
    • 84862777814 scopus 로고    scopus 로고
    • A role for small RNAs in DNA double-strand break repair
    • Wei W., et al. A role for small RNAs in DNA double-strand break repair. Cell 2012, 149(1):101-112.
    • (2012) Cell , vol.149 , Issue.1 , pp. 101-112
    • Wei, W.1
  • 59
    • 84864647205 scopus 로고    scopus 로고
    • Site-specific DICER and DROSHA RNA. products control the DNA-damage response
    • Francia S., et al. Site-specific DICER and DROSHA RNA. products control the DNA-damage response. Nature 2012, 488(7410):231-235.
    • (2012) Nature , vol.488 , Issue.7410 , pp. 231-235
    • Francia, S.1
  • 60
    • 84868091999 scopus 로고    scopus 로고
    • A small RNA response at DNA ends in Drosophila
    • Michalik K.M., Bottcher R., Forstemann K. A small RNA response at DNA ends in Drosophila. Nucleic Acids Res. 2012, 40(19):9596-9603.
    • (2012) Nucleic Acids Res. , vol.40 , Issue.19 , pp. 9596-9603
    • Michalik, K.M.1    Bottcher, R.2    Forstemann, K.3
  • 61
    • 84899898213 scopus 로고    scopus 로고
    • Ago2 facilitates Rad51 recruitment and DNA double-strand break repair by homologous recombination
    • Gao M., et al. Ago2 facilitates Rad51 recruitment and DNA double-strand break repair by homologous recombination. Cell Res. 2014, 24(5):532-541.
    • (2014) Cell Res. , vol.24 , Issue.5 , pp. 532-541
    • Gao, M.1
  • 62
    • 34249038737 scopus 로고    scopus 로고
    • RNA-templated DNA repair
    • Storici F., et al. RNA-templated DNA repair. Nature 2007, 447(7142):338-341.
    • (2007) Nature , vol.447 , Issue.7142 , pp. 338-341
    • Storici, F.1
  • 63
    • 84911500734 scopus 로고    scopus 로고
    • Transcript-RNA-templated DNA recombination and repair
    • Keskin H., et al. Transcript-RNA-templated DNA recombination and repair. Nature 2014, 515(7527):436-439.
    • (2014) Nature , vol.515 , Issue.7527 , pp. 436-439
    • Keskin, H.1
  • 64
    • 84865727393 scopus 로고    scopus 로고
    • The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression
    • Derrien T., et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012, 22(9):1775-1789.
    • (2012) Genome Res. , vol.22 , Issue.9 , pp. 1775-1789
    • Derrien, T.1
  • 65
    • 84865760395 scopus 로고    scopus 로고
    • GENCODE: the reference human genome annotation for The ENCODE Project
    • Harrow J., et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 2012, 22(9):1760-1774.
    • (2012) Genome Res. , vol.22 , Issue.9 , pp. 1760-1774
    • Harrow, J.1
  • 66
    • 84910140143 scopus 로고    scopus 로고
    • Non-coding RNAs including miRNAs and lncRNAs in cardiovascular biology and disease
    • Kataoka M., Wang D.Z. Non-coding RNAs including miRNAs and lncRNAs in cardiovascular biology and disease. Cells 2014, 3(3):883-898.
    • (2014) Cells , vol.3 , Issue.3 , pp. 883-898
    • Kataoka, M.1    Wang, D.Z.2
  • 67
    • 84896823260 scopus 로고    scopus 로고
    • LncRNAs: new players in apoptosis control
    • Rossi M.N., Antonangeli F. LncRNAs: new players in apoptosis control. Int. J. Cell Biol. 2014, 2014:473857.
    • (2014) Int. J. Cell Biol. , vol.2014 , pp. 473857
    • Rossi, M.N.1    Antonangeli, F.2
  • 68
    • 84884953564 scopus 로고    scopus 로고
    • Function of lncRNAs and approaches to lncRNA-protein interactions
    • Zhu J., et al. Function of lncRNAs and approaches to lncRNA-protein interactions. Sci. China Life Sci. 2013, 56(10):876-885.
    • (2013) Sci. China Life Sci. , vol.56 , Issue.10 , pp. 876-885
    • Zhu, J.1
  • 69
    • 84863492026 scopus 로고    scopus 로고
    • Macro lncRNAs: a new layer of cis-regulatory information in the mammalian genome
    • Guenzl P.M., Barlow D.P. Macro lncRNAs: a new layer of cis-regulatory information in the mammalian genome. RNA Biol. 2012, 9(6):731-741.
    • (2012) RNA Biol. , vol.9 , Issue.6 , pp. 731-741
    • Guenzl, P.M.1    Barlow, D.P.2
  • 70
    • 84883769504 scopus 로고    scopus 로고
    • Rise of the RNA machines: exploring the structure of long non-coding RNAs
    • Novikova I.V., et al. Rise of the RNA machines: exploring the structure of long non-coding RNAs. J. Mol. Biol. 2013, 425(19):3731-3746.
    • (2013) J. Mol. Biol. , vol.425 , Issue.19 , pp. 3731-3746
    • Novikova, I.V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.