-
1
-
-
84880083510
-
The infinite push: A new support vector ranking algorithm that directly optimizes accuracy at the absolute top of the list
-
SIAM
-
S. Agarwal. The infinite push: A new support vector ranking algorithm that directly optimizes accuracy at the absolute top of the list. In SDM, pages 839-850. SIAM, 2011.
-
(2011)
SDM
, pp. 839-850
-
-
Agarwal, S.1
-
2
-
-
33645505792
-
Convexity, classification, and risk bounds
-
P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101(473):138-156, 2006.
-
(2006)
Journal of the American Statistical Association
, vol.101
, Issue.473
, pp. 138-156
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
7
-
-
80053458482
-
Learning scoring functions with order-preserving losses and standardized supervision
-
D. Buffoni, P. Gallinari, N. Usunier, and C. Calauzènes. Learning scoring functions with order-preserving losses and standardized supervision. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages 825-832, 2011.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML-11)
, pp. 825-832
-
-
Buffoni, D.1
Gallinari, P.2
Usunier, N.3
Calauzènes, C.4
-
9
-
-
84858770497
-
Tighter bounds for structured estimation
-
O. Chapelle, C. B. Do, C. H. Teo, Q. V. Le, and A. J. Smola. Tighter bounds for structured estimation. In Advances in neural information processing systems, pages 281-288, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, pp. 281-288
-
-
Chapelle, O.1
Do, C.B.2
Teo, C.H.3
Le, Q.V.4
Smola, A.J.5
-
10
-
-
84937915489
-
-
PhD thesis, PhD thesis, Purdue University, West Lafayette, Indiana, USA
-
N. Ding. Statistical Machine Learning in T-Exponential Family of Distributions. PhD thesis, PhD thesis, Purdue University, West Lafayette, Indiana, USA, 2013.
-
(2013)
Statistical Machine Learning in T-Exponential Family of Distributions
-
-
Ding, N.1
-
11
-
-
84871531284
-
Agnostic learning of monomials by halfspaces is hard
-
V. Feldman, V. Guruswami, P. Raghavendra, and Y. Wu. Agnostic learning of monomials by halfspaces is hard. SIAM Journal on Computing, 41(6):1558-1590, 2012.
-
(2012)
SIAM Journal on Computing
, vol.41
, Issue.6
, pp. 1558-1590
-
-
Feldman, V.1
Guruswami, V.2
Raghavendra, P.3
Wu, Y.4
-
12
-
-
80052668032
-
Large-scale matrix factorization with distributed stochastic gradient descent
-
R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factorization with distributed stochastic gradient descent. In Conference on Knowledge Discovery and Data Mining, pages 69-77, 2011.
-
(2011)
Conference on Knowledge Discovery and Data Mining
, pp. 69-77
-
-
Gemulla, R.1
Nijkamp, E.2
Haas, P.J.3
Sismanis, Y.4
-
13
-
-
0004262735
-
-
John Wiley and Sons, New York
-
P. J. Huber. Robust Statistics. John Wiley and Sons, New York, 1981.
-
(1981)
Robust Statistics
-
-
Huber, P.J.1
-
16
-
-
83555170269
-
Random classification noise defeats all convex potential boosters
-
P. Long and R. Servedio. Random classification noise defeats all convex potential boosters. Machine Learning Journal, 78(3):287-304, 2010.
-
(2010)
Machine Learning Journal
, vol.78
, Issue.3
, pp. 287-304
-
-
Long, P.1
Servedio, R.2
-
18
-
-
70450197241
-
Robust stochastic approximation approach to stochastic programming
-
A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574-1609, 2009.
-
(2009)
SIAM Journal on Optimization
, vol.19
, Issue.4
, pp. 1574-1609
-
-
Nemirovski, A.1
Juditsky, A.2
Lan, G.3
Shapiro, A.4
-
19
-
-
85098056778
-
-
Springer Series in Operations Research. Springer, 2nd edition
-
J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations Research. Springer, 2nd edition, 2006.
-
(2006)
Numerical Optimization
-
-
Nocedal, J.1
Wright, S.J.2
-
20
-
-
77954568972
-
Letor: A benchmark collection for research on learning to rank for information retrieval
-
T. Qin, T.-Y. Liu, J. Xu, and H. Li. Letor: A benchmark collection for research on learning to rank for information retrieval. Information Retrieval, 13(4):346-374, 2010.
-
(2010)
Information Retrieval
, vol.13
, Issue.4
, pp. 346-374
-
-
Qin, T.1
Liu, T.-Y.2
Xu, J.3
Li, H.4
-
22
-
-
70450239631
-
The p-norm push: A simple convex ranking algorithm that concentrates at the top of the list
-
C. Rudin. The p-norm push: A simple convex ranking algorithm that concentrates at the top of the list. The Journal of Machine Learning Research, 10:2233-2271, 2009.
-
(2009)
The Journal of Machine Learning Research
, vol.10
, pp. 2233-2271
-
-
Rudin, C.1
|