메뉴 건너뛰기




Volumn 1, Issue , 2012, Pages 535-542

Modelling transition dynamics in MDPs with RKHS embeddings

Author keywords

[No Author keywords available]

Indexed keywords

CLASSICAL CONTROL; CONDITIONAL DISTRIBUTION; DYNAMIC PROGRAMMING METHODS; EMBEDDINGS; GAUSSIAN PROCESSES; INNER PRODUCT; LEARNING TASKS; LEAST SQUARE; LINEAR COMPLEXITY; MARKOV DECISION PROCESSES; NAVIGATION PROBLEM; NONPARAMETRIC APPROACHES; OPTIMAL POLICIES; OPTIMISATIONS; POLICY ITERATION; REPRODUCING KERNEL HILBERT SPACES; TRANSITION DYNAMICS; TRANSITION PROBABILITIES; VALUE ESTIMATION; VALUE FUNCTIONS; VALUE ITERATION ALGORITHM;

EID: 84867133646     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (83)

References (29)
  • 1
    • 0011812771 scopus 로고    scopus 로고
    • Kernel independent component analysis
    • Bach, F. R. and Jordan, M. I. Kernel independent component analysis. J. Mach. Learn. Res., 3:1-48, 2002.
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 1-48
    • Bach, F.R.1    Jordan, M.I.2
  • 4
    • 61849173491 scopus 로고    scopus 로고
    • Gaussian process dynamic programming
    • Deisenroth, M. P., Rasmussen, C. E., and Peters, J. Gaussian process dynamic programming. Neurocomputing, 72(7-9):1508-1524, 2009.
    • (2009) Neurocomputing , vol.72 , Issue.7-9 , pp. 1508-1524
    • Deisenroth, M.P.1    Rasmussen, C.E.2    Peters, J.3
  • 5
    • 31844451013 scopus 로고    scopus 로고
    • Reinforcement learning with gaussian processes
    • Engel, Y., Mannor, S., and Meir, R. Reinforcement learning with gaussian processes. In ICML, 2005.
    • (2005) ICML
    • Engel, Y.1    Mannor, S.2    Meir, R.3
  • 8
    • 85162488584 scopus 로고    scopus 로고
    • A non-parametric approach to dynamic programming
    • Kroemer, O. and Peters, J. A non-parametric approach to dynamic programming. In NIPS, 2011.
    • (2011) NIPS
    • Kroemer, O.1    Peters, J.2
  • 10
    • 14544299611 scopus 로고    scopus 로고
    • On learning vector-valued functions
    • Micchelli, C.A. and Pontil, M. On learning vector-valued functions. Neural Computation, 17(1):177-204, 2005.
    • (2005) Neural Computation , vol.17 , Issue.1 , pp. 177-204
    • Micchelli, C.A.1    Pontil, M.2
  • 11
    • 0036832956 scopus 로고    scopus 로고
    • Kernel-based reinforcement learning
    • Ormoneit, D. and Sen, S. Kernel-based reinforcement learning. In Machine Learning, pp. 161-178, 1999.
    • (1999) Machine Learning , pp. 161-178
    • Ormoneit, D.1    Sen, S.2
  • 12
    • 56449092660 scopus 로고    scopus 로고
    • An analysis of linear models, linear value-function approximation, and feature selection for reinforcement learning
    • Parr, R., Li, L., Taylor, G., Painter-Wakefield, C., and Littman, M. L. An analysis of linear models, linear value-function approximation, and feature selection for reinforcement learning. In ICML, 2008.
    • (2008) ICML
    • Parr, R.1    Li, L.2    Taylor, G.3    Painter-Wakefield, C.4    Littman, M.L.5
  • 14
    • 31844440682 scopus 로고    scopus 로고
    • Gaussian processes in reinforcement learning
    • MIT Press
    • Rasmussen, C. E. and Kuss, M. Gaussian processes in reinforcement learning. In NIPS. MIT Press, 2003.
    • (2003) NIPS
    • Rasmussen, C.E.1    Kuss, M.2
  • 17
    • 0028497385 scopus 로고
    • An upper bound on the loss from approximate optimal-value functions
    • Singh, S. P. and Yee, R. C. An upper bound on the loss from approximate optimal-value functions. Machine Learning, 16(3):227-233, 1994.
    • (1994) Machine Learning , vol.16 , Issue.3 , pp. 227-233
    • Singh, S.P.1    Yee, R.C.2
  • 18
    • 14344259597 scopus 로고    scopus 로고
    • Kernels and regularization on graphs
    • Smola, A. J. and Kondor, R. I. Kernels and regularization on graphs. In COLT, 2003.
    • (2003) COLT
    • Smola, A.J.1    Kondor, R.I.2
  • 19
    • 71149099279 scopus 로고    scopus 로고
    • Hilbert space embeddings of conditional distributions with applications to dynamical systems
    • Song, L., Huang, J., Smola, A. J., and Fukumizu, K. Hilbert space embeddings of conditional distributions with applications to dynamical systems. In ICML, 2009.
    • (2009) ICML
    • Song, L.1    Huang, J.2    Smola, A.J.3    Fukumizu, K.4
  • 21
    • 84867129006 scopus 로고    scopus 로고
    • Nonparametric tree graphical models
    • Song, L., Gretton, A., and Guestrin, C. Nonparametric tree graphical models. AISTATS, 9, 2010b.
    • (2010) AISTATS , vol.9
    • Song, L.1    Gretton, A.2    Guestrin, C.3
  • 26
    • 71149100225 scopus 로고    scopus 로고
    • Kernelized value function approximation for reinforcement learning
    • Taylor, G. and Parr, R. Kernelized value function approximation for reinforcement learning. In ICML, 2009.
    • (2009) ICML
    • Taylor, G.1    Parr, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.