-
1
-
-
0011812771
-
Kernel independent component analysis
-
Bach, F. R. and Jordan, M. I. Kernel independent component analysis. J. Mach. Learn. Res., 3:1-48, 2002.
-
(2002)
J. Mach. Learn. Res.
, vol.3
, pp. 1-48
-
-
Bach, F.R.1
Jordan, M.I.2
-
4
-
-
61849173491
-
Gaussian process dynamic programming
-
Deisenroth, M. P., Rasmussen, C. E., and Peters, J. Gaussian process dynamic programming. Neurocomputing, 72(7-9):1508-1524, 2009.
-
(2009)
Neurocomputing
, vol.72
, Issue.7-9
, pp. 1508-1524
-
-
Deisenroth, M.P.1
Rasmussen, C.E.2
Peters, J.3
-
5
-
-
31844451013
-
Reinforcement learning with gaussian processes
-
Engel, Y., Mannor, S., and Meir, R. Reinforcement learning with gaussian processes. In ICML, 2005.
-
(2005)
ICML
-
-
Engel, Y.1
Mannor, S.2
Meir, R.3
-
7
-
-
84867121157
-
-
arXiv
-
Grünewälder, S., Lever, G., Baldassarre, L., Pontil, M., and Gretton, A. Modelling transition dynamics in mdps with rkhs embeddings. In arXiv, 2012.
-
(2012)
Modelling Transition Dynamics in Mdps with Rkhs Embeddings
-
-
Grünewälder, S.1
Lever, G.2
Baldassarre, L.3
Pontil, M.4
Gretton, A.5
-
8
-
-
85162488584
-
A non-parametric approach to dynamic programming
-
Kroemer, O. and Peters, J. A non-parametric approach to dynamic programming. In NIPS, 2011.
-
(2011)
NIPS
-
-
Kroemer, O.1
Peters, J.2
-
10
-
-
14544299611
-
On learning vector-valued functions
-
Micchelli, C.A. and Pontil, M. On learning vector-valued functions. Neural Computation, 17(1):177-204, 2005.
-
(2005)
Neural Computation
, vol.17
, Issue.1
, pp. 177-204
-
-
Micchelli, C.A.1
Pontil, M.2
-
11
-
-
0036832956
-
Kernel-based reinforcement learning
-
Ormoneit, D. and Sen, S. Kernel-based reinforcement learning. In Machine Learning, pp. 161-178, 1999.
-
(1999)
Machine Learning
, pp. 161-178
-
-
Ormoneit, D.1
Sen, S.2
-
12
-
-
56449092660
-
An analysis of linear models, linear value-function approximation, and feature selection for reinforcement learning
-
Parr, R., Li, L., Taylor, G., Painter-Wakefield, C., and Littman, M. L. An analysis of linear models, linear value-function approximation, and feature selection for reinforcement learning. In ICML, 2008.
-
(2008)
ICML
-
-
Parr, R.1
Li, L.2
Taylor, G.3
Painter-Wakefield, C.4
Littman, M.L.5
-
14
-
-
31844440682
-
Gaussian processes in reinforcement learning
-
MIT Press
-
Rasmussen, C. E. and Kuss, M. Gaussian processes in reinforcement learning. In NIPS. MIT Press, 2003.
-
(2003)
NIPS
-
-
Rasmussen, C.E.1
Kuss, M.2
-
17
-
-
0028497385
-
An upper bound on the loss from approximate optimal-value functions
-
Singh, S. P. and Yee, R. C. An upper bound on the loss from approximate optimal-value functions. Machine Learning, 16(3):227-233, 1994.
-
(1994)
Machine Learning
, vol.16
, Issue.3
, pp. 227-233
-
-
Singh, S.P.1
Yee, R.C.2
-
18
-
-
14344259597
-
Kernels and regularization on graphs
-
Smola, A. J. and Kondor, R. I. Kernels and regularization on graphs. In COLT, 2003.
-
(2003)
COLT
-
-
Smola, A.J.1
Kondor, R.I.2
-
19
-
-
71149099279
-
Hilbert space embeddings of conditional distributions with applications to dynamical systems
-
Song, L., Huang, J., Smola, A. J., and Fukumizu, K. Hilbert space embeddings of conditional distributions with applications to dynamical systems. In ICML, 2009.
-
(2009)
ICML
-
-
Song, L.1
Huang, J.2
Smola, A.J.3
Fukumizu, K.4
-
20
-
-
77956540831
-
Hilbert space embeddings of hidden Markov models
-
Song, L., Boots, B., Siddiqi, S., Gordon, G., and Smola, A. Hilbert space embeddings of hidden Markov models. In ICML, 2010a.
-
(2010)
ICML
-
-
Song, L.1
Boots, B.2
Siddiqi, S.3
Gordon, G.4
Smola, A.5
-
21
-
-
84867129006
-
Nonparametric tree graphical models
-
Song, L., Gretton, A., and Guestrin, C. Nonparametric tree graphical models. AISTATS, 9, 2010b.
-
(2010)
AISTATS
, vol.9
-
-
Song, L.1
Gretton, A.2
Guestrin, C.3
-
22
-
-
84867126508
-
Kernel belief propagation
-
Song, L., Gretton, A., Bickson, D., Low, Y., and Guestrin, C. Kernel belief propagation. In AISTATS, 2011.
-
(2011)
AISTATS
-
-
Song, L.1
Gretton, A.2
Bickson, D.3
Low, Y.4
Guestrin, C.5
-
23
-
-
77951953755
-
Hilbert space embeddings and metrics on probability measures
-
Sriperumbudur, B., Gretton, A., Fukumizu, K., Lanckriet, G., and Schölkopf, B. Hilbert space embeddings and metrics on probability measures. JMLR, 11, 2010.
-
(2010)
JMLR
, vol.11
-
-
Sriperumbudur, B.1
Gretton, A.2
Fukumizu, K.3
Lanckriet, G.4
Schölkopf, B.5
-
26
-
-
71149100225
-
Kernelized value function approximation for reinforcement learning
-
Taylor, G. and Parr, R. Kernelized value function approximation for reinforcement learning. In ICML, 2009.
-
(2009)
ICML
-
-
Taylor, G.1
Parr, R.2
-
29
-
-
33750328566
-
Kernel least-squares temporal difference learning
-
Xu, X., Xie, T., Hu, D., and Lu, X. Kernel least-squares temporal difference learning. International Journal of Information Technology, 2005.
-
(2005)
International Journal of Information Technology
-
-
Xu, X.1
Xie, T.2
Hu, D.3
Lu, X.4
|