메뉴 건너뛰기




Volumn 7188 LNAI, Issue , 2012, Pages 102-114

Regularized least squares temporal difference learning with nested ℓ 2 and ℓ 1 penalization

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATE VALUE FUNCTION; APPROXIMATION SPACES; CENTRAL PROBLEMS; HIGH-DIMENSIONAL FEATURE SPACE; LEAST SQUARE; NUMBER OF SAMPLES; OVERFITTING; POLICY EVALUATION; PREDICTION PERFORMANCE; PROJECTION OPERATOR; REGULARIZED LEAST SQUARES; REGULARIZED METHOD; TEMPORAL DIFFERENCE LEARNING;

EID: 84861687861     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-29946-9_13     Document Type: Conference Paper
Times cited : (19)

References (15)
  • 1
    • 40849145988 scopus 로고    scopus 로고
    • Learning near-optimal policies with Bellmanresidual minimization based fitted policy iteration and a single sample path
    • Antos, A., Szepesvári, C., Munos, R.: Learning near-optimal policies with Bellmanresidual minimization based fitted policy iteration and a single sample path. Machine Learning 71(1) (2008)
    • (2008) Machine Learning , vol.71 , Issue.1
    • Antos, A.1    Szepesvári, C.2    Munos, R.3
  • 2
    • 0001771345 scopus 로고    scopus 로고
    • Linear least-squares algorithms for temporal difference learning
    • Bradtke, S., Barto, A.: Linear least-squares algorithms for temporal difference learning. Machine Learning 22, 33-57 (1996)
    • (1996) Machine Learning , vol.22 , pp. 33-57
    • Bradtke, S.1    Barto, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.