-
2
-
-
0000708831
-
Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems
-
November
-
C. E. Antoniak. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics, 2(6):1152-1174, November 1974.
-
(1974)
The Annals of Statistics
, vol.2
, Issue.6
, pp. 1152-1174
-
-
Antoniak, C.E.1
-
4
-
-
0346238931
-
Task clustering and gating for Bayesian multitask learning
-
B. Bakker and T. Heskes. Task clustering and gating for Bayesian multitask learning. Journal of Machine Learning Research, 4:83-99, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 83-99
-
-
Bakker, B.1
Heskes, T.2
-
8
-
-
0001432658
-
Discounted dynamic programming
-
D. Blackwell. Discounted dynamic programming. Ann. Math. Stat., 36:226-235, 1965.
-
(1965)
Ann. Math. Stat
, vol.36
, pp. 226-235
-
-
Blackwell, D.1
-
9
-
-
0002617436
-
Ferguson distributions via Polya urn schemes
-
D. Blackwell and J. MacQueen. Ferguson distributions via Polya urn schemes. Annals of Statistics, 1:353-355, 1973.
-
(1973)
Annals of Statistics
, vol.1
, pp. 353-355
-
-
Blackwell, D.1
MacQueen, J.2
-
11
-
-
0026998041
-
Reinforcement learning with perceptual aliasing: The perceptual distinctions approach
-
San Jose, California: AAAI Press
-
L. Chrisman. Reinforcement learning with perceptual aliasing: The perceptual distinctions approach. In Proceedings of the Tenth International Conference on Artificial Intelligence, pages 183-188. San Jose, California: AAAI Press, 1992.
-
(1992)
Proceedings of the Tenth International Conference on Artificial Intelligence
, pp. 183-188
-
-
Chrisman, L.1
-
15
-
-
0001120413
-
A Bayesian analysis of some non-parametric problems
-
T. Ferguson. A Bayesian analysis of some non-parametric problems. The Annals of Statistics, 1: 209-230, 1973.
-
(1973)
The Annals of Statistics
, vol.1
, pp. 209-230
-
-
Ferguson, T.1
-
20
-
-
0041656866
-
An improved policy iteration algorithm for partially observable MDPs
-
E. A. Hansen. An improved policy iteration algorithm for partially observable MDPs. In Advances in Neural Information Processing Systems, volume 10, 1997.
-
(1997)
Advances in Neural Information Processing Systems
, vol.10
-
-
Hansen, E.A.1
-
21
-
-
66849123080
-
-
G. E. Hinton and T. J. Sejnowski. Learning and relearning in Boltzmann machines. In J. L. McClelland, D. E. Rumelhart, and the PDP Research Group, editors, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1, pages 282-317. MIT Press, Cambridge, MA, 1986.
-
G. E. Hinton and T. J. Sejnowski. Learning and relearning in Boltzmann machines. In J. L. McClelland, D. E. Rumelhart, and the PDP Research Group, editors, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, volume 1, pages 282-317. MIT Press, Cambridge, MA, 1986.
-
-
-
-
22
-
-
0000624333
-
Reinforcement learning algorithm for partially observable Markov decision problems
-
MIT Press, Cambridge, MA
-
T. Jaakkola, S. P. Singh, and M. I. Jordan. Reinforcement learning algorithm for partially observable Markov decision problems. In Advances in Neural Information Processing Systems, volume 7. MIT Press, Cambridge, MA., 1995.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
-
-
Jaakkola, T.1
Singh, S.P.2
Jordan, M.I.3
-
23
-
-
4043084564
-
Tutorial on variational approximation methods
-
M. Opper and D. Saad, editors, MIT Press
-
T. S. Jaakkola. Tutorial on variational approximation methods. In M. Opper and D. Saad, editors, Advanced Mean Field Methods: Theory and Practice, pages 129-160. MIT Press, 2001.
-
(2001)
Advanced Mean Field Methods: Theory and Practice
, pp. 129-160
-
-
Jaakkola, T.S.1
-
24
-
-
0000935895
-
An introduction to variational methods for graphical models
-
Cambridge, MA, MIT Press
-
M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. In Learning in Graphical Models, pages 105-161, Cambridge, MA, 1999. MIT Press.
-
(1999)
Learning in Graphical Models
, pp. 105-161
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
25
-
-
0032073263
-
Planning and acting in partially observable stochastic domains
-
L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially observable stochastic domains. Artificial Intelligence, 101:99-134, 1998.
-
(1998)
Artificial Intelligence
, vol.101
, pp. 99-134
-
-
Kaelbling, L.1
Littman, M.2
Cassandra, A.3
-
32
-
-
66849100434
-
-
Q. Liu, X, Liao, and L, Carin. Semi-supervised multitask learning. In J.C. Platt, D, Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 937-944. MIT Press, Cambridge, MA, 2008.
-
Q. Liu, X, Liao, and L, Carin. Semi-supervised multitask learning. In J.C. Platt, D, Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 937-944. MIT Press, Cambridge, MA, 2008.
-
-
-
-
33
-
-
0000494894
-
Computationally feasible bounds for partially observed Markov decision processes
-
W. S. Lovejoy. Computationally feasible bounds for partially observed Markov decision processes. Operations Research, 39(1):162-175, 1991.
-
(1991)
Operations Research
, vol.39
, Issue.1
, pp. 162-175
-
-
Lovejoy, W.S.1
-
36
-
-
0031356598
-
Matched pursuits with a wave-based dictionary
-
Dec
-
M. McClure and L. Carin. Matched pursuits with a wave-based dictionary. IEEE Trans. Signal Proc., 45:2912-2927, Dec. 1997.
-
(1997)
IEEE Trans. Signal Proc
, vol.45
, pp. 2912-2927
-
-
McClure, M.1
Carin, L.2
-
37
-
-
0002103968
-
Learning finite-state controllers for partially observable environments
-
San Francisco, CA, Morgan Kaufmann
-
N. Meuleau, L. Peshkin, K. Kim, and L. Kaelbling. Learning finite-state controllers for partially observable environments. In Proceedings of the 15th Annual Conference on Uncertainty in Artificial Intelligence (UAI-99), pages 427-43, San Francisco, CA, 1999. Morgan Kaufmann.
-
(1999)
Proceedings of the 15th Annual Conference on Uncertainty in Artificial Intelligence (UAI-99)
, pp. 427-443
-
-
Meuleau, N.1
Peshkin, L.2
Kim, K.3
Kaelbling, L.4
-
38
-
-
0007300808
-
Markov chain sampling methods for Dirichlet process mixture models
-
Technical Report 9815, Dept. of Statistics, University of Toronto
-
R.M. Neal. Markov chain sampling methods for Dirichlet process mixture models. Technical Report 9815, Dept. of Statistics, University of Toronto, 1998.
-
(1998)
-
-
Neal, R.M.1
-
39
-
-
84880772945
-
Point-based value iteration: An anytime algorithm for POMDPs
-
August
-
J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for POMDPs. In Proceedings of IJCAI, pages 1025-1032, August 2003.
-
(2003)
Proceedings of IJCAI
, pp. 1025-1032
-
-
Pineau, J.1
Gordon, G.2
Thrun, S.3
-
41
-
-
0024610919
-
A tutorial on hidden Markov models and selected applications in speech recognition
-
L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2):257-285, 1989.
-
(1989)
Proceedings of the IEEE
, vol.77
, Issue.2
, pp. 257-285
-
-
Rabiner, L.R.1
-
44
-
-
0032653462
-
Hidden Markov models for multiaspect target classification
-
July
-
P. R. Runkle, P. K. Bharadwaj, L. Couchman, and L. Carin. Hidden Markov models for multiaspect target classification. IEEE Transactions on Signal Processing, 47:2035-2040, July 1999.
-
(1999)
IEEE Transactions on Signal Processing
, vol.47
, pp. 2035-2040
-
-
Runkle, P.R.1
Bharadwaj, P.K.2
Couchman, L.3
Carin, L.4
-
45
-
-
0000720609
-
A constructive definition of Dirichlet priors
-
J. Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 4:639-650, 1994.
-
(1994)
Statistica Sinica
, vol.4
, pp. 639-650
-
-
Sethuraman, J.1
-
46
-
-
0015658957
-
The optimal control of partially observable Markov processes over a finite horizon
-
R. D. Smallwood and E. J. Sondik. The optimal control of partially observable Markov processes over a finite horizon. Operational Research, 21:1071-1088, 1973.
-
(1973)
Operational Research
, vol.21
, pp. 1071-1088
-
-
Smallwood, R.D.1
Sondik, E.J.2
-
49
-
-
0017943242
-
The optimal control of partially observable Markov processes over the infinite horizon: Discounted costs
-
Mar
-
E. J, Sondik. The optimal control of partially observable Markov processes over the infinite horizon: Discounted costs. Operations Research, 26(2):282-304, Mar. 1978.
-
(1978)
Operations Research
, vol.26
, Issue.2
, pp. 282-304
-
-
Sondik, E.J.1
-
53
-
-
31844436266
-
Bayesian sparse sampling for on-line reward optimization
-
T. Wang, D. Lizotte, M. Bowling, and D. Schuurmans. Bayesian sparse sampling for on-line reward optimization. In Proceedings of the Twenty-Second International Conference on Machine Learning (ICML), pages 961-968, 2005.
-
(2005)
Proceedings of the Twenty-Second International Conference on Machine Learning (ICML)
, pp. 961-968
-
-
Wang, T.1
Lizotte, D.2
Bowling, M.3
Schuurmans, D.4
-
55
-
-
0040830539
-
Hyperparameter estimation in Dirichlet process mixture models
-
Technical Report 92-A03, ISDS Discussion Paper, Duke University
-
M. West. Hyperparameter estimation in Dirichlet process mixture models. Technical Report 92-A03, ISDS Discussion Paper, Duke University, 1992.
-
(1992)
-
-
West, M.1
-
56
-
-
0002612391
-
Hierarchical priors and mixture models, with application in regression and density estimation
-
A.F.M. Smith and P. Freeman, editors, New York: Wiley
-
M. West, P. Muller, and M.D. Escobar. Hierarchical priors and mixture models, with application in regression and density estimation. In A.F.M. Smith and P. Freeman, editors, Aspects of Uncertainty: A Tribute to D. V. Lindley, pages 363-386. New York: Wiley, 1994.
-
(1994)
Aspects of Uncertainty: A Tribute to D. V. Lindley
, pp. 363-386
-
-
West, M.1
Muller, P.2
Escobar, M.D.3
-
59
-
-
33846487387
-
Multi-task learning for classification with Dirichlet process priors
-
Y. Xue, X. Liao, L. Carin, and B. Krishnapuram. Multi-task learning for classification with Dirichlet process priors. Journal of Machine Learning Research (JMLR), 8:35-63, 2007.
-
(2007)
Journal of Machine Learning Research (JMLR)
, vol.8
, pp. 35-63
-
-
Xue, Y.1
Liao, X.2
Carin, L.3
Krishnapuram, B.4
-
60
-
-
2342586046
-
Collaborative ensemble learning: Combining collaborative and content-based information filtering via hierarchical Bayes
-
K. Yu, A. Schwaighofer, V. Tresp, W.-Y. Ma, and H. Zhang. Collaborative ensemble learning: Combining collaborative and content-based information filtering via hierarchical Bayes. In Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence, 2003.
-
(2003)
Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence
-
-
Yu, K.1
Schwaighofer, A.2
Tresp, V.3
Ma, W.-Y.4
Zhang, H.5
|