-
2
-
-
34249753618
-
Support vector networks
-
C. Cortes and V.N. Vapnik, Support vector networks. Machine Learning, vol.20, no.3, pp.273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.N.2
-
5
-
-
0035272287
-
An introduction to Kernel based learning algorithms
-
K.R. Muller and S. Mike and G. Ratsch and K. Tsuda and B. scholkopf, An Introduction to Kernel Based Learning Algorithms, IEEE Trans. on Neural Networks, vol.12, no.2, pp.181-201, 2001.
-
(2001)
IEEE Trans. on Neural Networks
, vol.12
, Issue.2
, pp. 181-201
-
-
Muller, K.R.1
Mike, S.2
Ratsch, G.3
Tsuda, K.4
Scholkopf, B.5
-
7
-
-
0033321352
-
Using class-center vectors to build support vector machines
-
Neural Networks for Signal Processing IX, 1999
-
X.G. Zhang, Using class-center vectors to build support vector machines, Neural Networks for Signal Processing IX, 1999. Proceedings of the 1999 IEEE Signal Processing Society Workshop, pp.3-11, 1999.
-
(1999)
Proceedings of the 1999 IEEE Signal Processing Society Workshop
, pp. 3-11
-
-
Zhang, X.G.1
-
9
-
-
0036881508
-
Robust support vector machine with bullet hole image classification
-
Q. Song, W.J. Hu and W.F Xie, Robust Support Vector Machine With Bullet Hole Image Classification, IEEE Trans. on Systems, Man and Cybernetics, vol.32, no.4, pp.440-448, 2002.
-
(2002)
IEEE Trans. on Systems, Man and Cybernetics
, vol.32
, Issue.4
, pp. 440-448
-
-
Song, Q.1
Hu, W.J.2
Xie, W.F.3
-
10
-
-
2942628013
-
An accelerated decomposition algorithm for robust support vector machines
-
W.J. Hu and Q. Song, An Accelerated Decomposition Algorithm for Robust Support Vector Machines, IEEE Trans. on Circuits and Systems, vol.51, no.5, pp.234-240, 2004.
-
(2004)
IEEE Trans. on Circuits and Systems
, vol.51
, Issue.5
, pp. 234-240
-
-
Hu, W.J.1
Song, Q.2
-
11
-
-
0036505650
-
Fuzzy support vector machines
-
C.F. Lin and S.D. Wang, Fuzzy support vector machines, IEEE Trans. on Neural Networks, vol.13, no.2, pp.464-471, 2002.
-
(2002)
IEEE Trans. on Neural Networks
, vol.13
, Issue.2
, pp. 464-471
-
-
Lin, C.F.1
Wang, S.D.2
-
13
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
B. Scholkopf, J. Platt, J. Shawe-Taylor and A.J. Smola, Estimating the support of a high-dimensional distribution. Neural Computation, vol.13, no.7, pp.1443-1470, 2001.
-
(2001)
Neural Computation
, vol.13
, Issue.7
, pp. 1443-1470
-
-
Scholkopf, B.1
Platt, J.2
Shawe-Taylor, J.3
Smola, A.J.4
-
14
-
-
0041339696
-
Modified support vector novelty detector using training data with outliers
-
L.J. Cao, H.P. Lee and W.K. Chong, Modified support vector novelty detector using training data with outliers, Pattern Recognition Letters, vol.24, no.14, pp.2479-2487, 2003.
-
(2003)
Pattern Recognition Letters
, vol.24
, Issue.14
, pp. 2479-2487
-
-
Cao, L.J.1
Lee, H.P.2
Chong, W.K.3
-
15
-
-
0942266514
-
Support vector data description
-
D.M.J. Tax and R.P.W. Duin, Support vector data description, Machine Learning, vol.54, no.1, pp.45-66, 2004.
-
(2004)
Machine Learning
, vol.54
, Issue.1
, pp. 45-66
-
-
Tax, D.M.J.1
Duin, R.P.W.2
-
16
-
-
0027595430
-
A possibilistic Approach to Clustering
-
R. Krishnapuram and J.M. Keller, A possibilistic Approach to Clustering, IEEE Trans. on Fuzzy System, vol.1, no.2, pp.98-110, 1993.
-
(1993)
IEEE Trans. on Fuzzy System
, vol.1
, Issue.2
, pp. 98-110
-
-
Krishnapuram, R.1
Keller, J.M.2
-
17
-
-
0030214781
-
The possibilistic c-means algorithm: Insights and recommendations
-
R. Krishnapuram and J.M. Keller, The possibilistic c-means algorithm: insights and recommendations, IEEE Trans. on Fuzzy System, vol.4, no.3, pp.385-393, 1996.
-
(1996)
IEEE Trans. on Fuzzy System
, vol.4
, Issue.3
, pp. 385-393
-
-
Krishnapuram, R.1
Keller, J.M.2
-
18
-
-
0031139176
-
Robust clustering methods: A unified view
-
May
-
R.N. Dave and R. Krishnapuram, Robust clustering methods: a unified view, IEEE Trans. on Fuzzy System, vol.5, no.2, pp.270-293, May. 1997.
-
(1997)
IEEE Trans. on Fuzzy System
, vol.5
, Issue.2
, pp. 270-293
-
-
Dave, R.N.1
Krishnapuram, R.2
-
19
-
-
0003836788
-
Nonlinear component analysis as a Kernel eigenvalue problem
-
Max Planck Institute for Biological Cybernetics, Tubingen, Germany
-
B. Scholkopf and A.J. Smola and K.R. Muller, Nonlinear Component Analysis as a Kernel Eigenvalue Problem, technical report, Max Planck Institute for Biological Cybernetics, Tubingen, Germany, 1996.
-
(1996)
Technical Report
-
-
Scholkopf, B.1
Smola, A.J.2
Muller, K.R.3
-
20
-
-
0003425664
-
Support vector machines for classification and regression
-
Image, Speech and Intelligent Systems Research Group ISIS, University of Southampton
-
S. Gunn, Support Vector Machines for Classification and Regression, technical report, Image, Speech and Intelligent Systems Research Group ISIS, University of Southampton, 1998.
-
(1998)
Technical Report
-
-
Gunn, S.1
-
23
-
-
0342502195
-
Soft margins for AdaBoost
-
G. Ratsch, and T. Onoda and K.R. Muller, Soft margins for AdaBoost, Machine Learning, vol.42, no.3, pp.287-320, 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Ratsch, G.1
Onoda, T.2
Muller, K.R.3
-
24
-
-
0036565280
-
Mercer kernel-based clustering in feature space
-
M. Girolami, Mercer kernel-based clustering in feature space IEEE Trans. on Neural Networks, vol.13, no.3, pp.780-784, 2002.
-
(2002)
IEEE Trans. on Neural Networks
, vol.13
, Issue.3
, pp. 780-784
-
-
Girolami, M.1
|