메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Orthogonal matching pursuit with replacement

Author keywords

[No Author keywords available]

Indexed keywords

ITERATIVE METHODS; MATRIX ALGEBRA;

EID: 85162325406     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (67)

References (26)
  • 2
    • 42649140570 scopus 로고    scopus 로고
    • The restricted isometry property and its implications for compressed sensing
    • E. J. Candes. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique, 346(9-10):589-592,2008.
    • (2008) Comptes Rendus Mathematique , vol.346 , Issue.9-10 , pp. 589-592
    • Candes, E.J.1
  • 4
    • 65749110333 scopus 로고    scopus 로고
    • Subspace pursuit for compressive sensing signal reconstruction
    • W. Dai andO. Milenkovic. Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 55(5):2230-2249,2009.
    • (2009) IEEE Transactions on Information Theory , vol.55 , Issue.5 , pp. 2230-2249
    • Dai, W.1    Milenkovic, O.2
  • 5
    • 77955735515 scopus 로고    scopus 로고
    • Analysis of orthogonal matching pursuit using the restricted isometry property
    • M. A. Davenport and M. B. Wakin. Analysis of orthogonal matching pursuit using the restricted isometry property. IEEE Transactions on Information Theory, 56(9):4395-4401,2010.
    • (2010) IEEE Transactions on Information Theory , vol.56 , Issue.9 , pp. 4395-4401
    • Davenport, M.A.1    Wakin, M.B.2
  • 13
    • 0027928806 scopus 로고
    • 879-approximation algorithms for MAX CUT and MAX 2SAT
    • M. X. Goemans and D. R Williamson. .879-approximation algorithms for MAX CUT and MAX 2SAT. In STOC, pages 422-431,1994.
    • (1994) STOC , pp. 422-431
    • Goemans, M.X.1    Williamson, D.R.2
  • 17
    • 77949685085 scopus 로고    scopus 로고
    • Optimally tuned iterative reconstruction algorithms for compressed sensing
    • A. Maleki and D. Donoho.Optimally tuned iterative reconstruction algorithms for compressed sensing. IEEE Journal of Selected Topics in Signal Processing, 4(2):330-341,2010.
    • (2010) IEEE Journal of Selected Topics in Signal Processing , vol.4 , Issue.2 , pp. 330-341
    • Maleki, A.1    Donoho, D.2
  • 19
    • 62749175137 scopus 로고    scopus 로고
    • Cosamp: Iterative signal recovery from incomplete and inaccurate samples
    • D. Needell and J. A. Tropp. Cosamp: Iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3):301-321,2009.
    • (2009) Applied and Computational Harmonic Analysis , vol.26 , Issue.3 , pp. 301-321
    • Needell, D.1    Tropp, J.A.2
  • 22
    • 49249108566 scopus 로고    scopus 로고
    • On the impossibility of uniform sparse reconstruction using greedy methods
    • H. Rauhut.On the impossibility of uniform sparse reconstruction using greedy methods. Sampling Theory in Signal and Image Processing, 7(2):197-215,2008.
    • (2008) Sampling Theory in Signal and Image Processing , vol.7 , Issue.2 , pp. 197-215
    • Rauhut, H.1
  • 23
    • 79251503629 scopus 로고    scopus 로고
    • Trading accuracy for sparsity in optimization problems with sparsity constraints
    • S. Shalev-Shwartz, N. Srebro, and T. Zhang. Trading accuracy for sparsity in optimization problems with sparsity constraints. SI AM Journal onOptimization, 20:2807-2832,2010.
    • (2010) SI AM Journal OnOptimization , vol.20 , pp. 2807-2832
    • Shalev-Shwartz, S.1    Srebro, N.2    Zhang, T.3
  • 25
    • 84863393425 scopus 로고    scopus 로고
    • Adaptive forward-backward greedy algorithm for sparse learning with linear models
    • T. Zhang. Adaptive forward-backward greedy algorithm for sparse learning with linear models. In Advances in Neural Information Processing Systems, 2008.
    • (2008) Advances in Neural Information Processing Systems
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.