메뉴 건너뛰기




Volumn , Issue , 2011, Pages

On learning discrete graphical models using greedy methods

Author keywords

[No Author keywords available]

Indexed keywords

GRAPHIC METHODS;

EID: 85162338305     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (85)

References (28)
  • 1
    • 33747670266 scopus 로고    scopus 로고
    • Learning factor graphs in polynomial time and sample complexity
    • P. Abbeel, D. Koller, and A. Y. Ng. Learning factor graphs in polynomial time and sample complexity. Jour. Mach. Learning Res., 7:1743-1788, 2006.
    • (2006) Jour. Mach. Learning Res. , vol.7 , pp. 1743-1788
    • Abbeel, P.1    Koller, D.2    Ng, A.Y.3
  • 2
    • 85162018878 scopus 로고    scopus 로고
    • Convergence rates of gradient methods for high-dimensional statistical recovery
    • A. Agarwal, S. Negahban, and M. Wainwright. Convergence rates of gradient methods for high-dimensional statistical recovery. In NIPS, 2010.
    • (2010) NIPS
    • Agarwal, A.1    Negahban, S.2    Wainwright, M.3
  • 3
    • 80555158386 scopus 로고    scopus 로고
    • Self-concordant analysis for logistic regression
    • F. Bach. Self-concordant analysis for logistic regression. Electronic Journal of Statistics, 4:384-414, 2010.
    • (2010) Electronic Journal of Statistics , vol.4 , pp. 384-414
    • Bach, F.1
  • 4
    • 79952368955 scopus 로고    scopus 로고
    • Reconstruction of Markov random fields from samples: Some easy observations and algorithms
    • G. Bresler, E. Mossel, and A. Sly. Reconstruction of markov random fields from samples: Some easy observations and algorithms. In RANDOM 2008.
    • (2008) RANDOM
    • Bresler, G.1    Mossel, E.2    Sly, A.3
  • 5
    • 47849114121 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • E. Candes and T. Tao. The Dantzig selector: Statistical estimation when p is much larger than n. Annals of Statistics, 2006.
    • (2006) Annals of Statistics
    • Candes, E.1    Tao, T.2
  • 8
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees. IEEE Trans. Info. Theory, 14(3):462-467, 1968.
    • (1968) IEEE Trans. Info. Theory , vol.14 , Issue.3 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 9
    • 33744781810 scopus 로고    scopus 로고
    • Consistent estimation of the basic neighborhood structure of Markov random fields
    • I. Csiszár and Z. Talata. Consistent estimation of the basic neighborhood structure of Markov random fields. The Annals of Statistics, 34(1):123-145, 2006.
    • (2006) The Annals of Statistics , vol.34 , Issue.1 , pp. 123-145
    • Csiszár, I.1    Talata, Z.2
  • 10
    • 77953243531 scopus 로고    scopus 로고
    • Decomposition and model selection for large contingency tables
    • C. Dahinden, M. Kalisch, and P. Buhlmann. Decomposition and model selection for large contingency tables. Biometrical Journal, 52(2):233-252, 2010.
    • (2010) Biometrical Journal , vol.52 , Issue.2 , pp. 233-252
    • Dahinden, C.1    Kalisch, M.2    Buhlmann, P.3
  • 13
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28:337-374, 2000.
    • (2000) Annals of Statistics , vol.28 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 14
    • 33947716431 scopus 로고
    • Beitrag zur theorie der ferromagnetismus
    • E. Ising. Beitrag zur theorie der ferromagnetismus. Zeitschrift für Physik, 31:253-258, 1925.
    • (1925) Zeitschrift für Physik , vol.31 , pp. 253-258
    • Ising, E.1
  • 17
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the lasso
    • N. Meinshausen and P. Bühlmann. High dimensional graphs and variable selection with the lasso. Annals of Statistics, 34(3), 2006.
    • (2006) Annals of Statistics , vol.34 , Issue.3
    • Meinshausen, N.1    Bühlmann, P.2
  • 23
    • 0037214793 scopus 로고    scopus 로고
    • Maximum likelihood bounded tree-width Markov networks
    • N. Srebro. Maximum likelihood bounded tree-width Markov networks. Artificial Intelligence, 143(1): 123-138, 2003.
    • (2003) Artificial Intelligence , vol.143 , Issue.1 , pp. 123-138
    • Srebro, N.1
  • 24
    • 58149380535 scopus 로고    scopus 로고
    • Greedy approximation
    • V. N. Temlyakov. Greedy approximation. Acta Numerica, 17:235-409, 2008.
    • (2008) Acta Numerica , vol.17 , pp. 235-409
    • Temlyakov, V.N.1
  • 25
    • 51049121146 scopus 로고    scopus 로고
    • High-dimensional generalized linear models and the lasso
    • S. van de Geer. High-dimensional generalized linear models and the lasso. The Annals of Statistics, 36: 614-645, 2008.
    • (2008) The Annals of Statistics , vol.36 , pp. 614-645
    • Van De Geer, S.1
  • 26
    • 0003518588 scopus 로고
    • Complexity: Knots, colourings, and counting
    • Cambridge University Press, Cambridge
    • D. J. A. Welsh. Complexity: Knots, Colourings, and Counting. LMS Lecture Note Series. Cambridge University Press, Cambridge, 1993.
    • (1993) LMS Lecture Note Series
    • Welsh, D.J.A.1
  • 27
    • 84863393425 scopus 로고    scopus 로고
    • Adaptive forward-backward greedy algorithm for sparse learning with linear models
    • T. Zhang. Adaptive forward-backward greedy algorithm for sparse learning with linear models. In Neural Information Processing Systems (NIPS) 21, 2008.
    • (2008) Neural Information Processing Systems (NIPS) , vol.21
    • Zhang, T.1
  • 28
    • 64149088421 scopus 로고    scopus 로고
    • On the consistency of feature selection using greedy least squares regression
    • T. Zhang. On the consistency of feature selection using greedy least squares regression. Journal of Machine Learning Research, 10:555-568, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 555-568
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.