-
1
-
-
80052996141
-
Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants
-
Yang JS, Lai EC, (2011) Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Molecular cell 43: 892–903. doi: 10.1016/j.molcel.2011.07.024 21925378
-
(2011)
Molecular cell
, vol.43
, pp. 892-903
-
-
Yang, J.S.1
Lai, E.C.2
-
2
-
-
78651293534
-
miRBase: integrating microRNA annotation and deep-sequencing data
-
Kozomara A, Griffiths-Jones S, (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic acids research 39: D152–157. doi: 10.1093/nar/gkq1027 21037258
-
(2011)
Nucleic acids research
, vol.39
, pp. 152-157
-
-
Kozomara, A.1
Griffiths-Jones, S.2
-
3
-
-
58249088751
-
MicroRNAs: target recognition and regulatory functions
-
Bartel DP, (2009) MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233. doi: 10.1016/j.cell.2009.01.002 19167326
-
(2009)
Cell
, vol.136
, pp. 215-233
-
-
Bartel, D.P.1
-
4
-
-
84880921276
-
Adult-specific functions of animal microRNAs
-
Sun K, Lai EC, (2013) Adult-specific functions of animal microRNAs. Nature reviews Genetics 14: 535–548. doi: 10.1038/nrg3471 23817310
-
(2013)
Nature reviews Genetics
, vol.14
, pp. 535-548
-
-
Sun, K.1
Lai, E.C.2
-
5
-
-
84858379476
-
MicroRNAs in stress signaling and human disease
-
Mendell JT, Olson EN, (2012) MicroRNAs in stress signaling and human disease. Cell 148: 1172–1187. doi: 10.1016/j.cell.2012.02.005 22424228
-
(2012)
Cell
, vol.148
, pp. 1172-1187
-
-
Mendell, J.T.1
Olson, E.N.2
-
6
-
-
0027751663
-
The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14
-
Lee RC, Feinbaum RL, Ambros V, (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854. 8252621
-
(1993)
Cell
, vol.75
, pp. 843-854
-
-
Lee, R.C.1
Feinbaum, R.L.2
Ambros, V.3
-
7
-
-
0027730383
-
Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans
-
Wightman B, Ha I, Ruvkun G, (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75: 855–862. 8252622
-
(1993)
Cell
, vol.75
, pp. 855-862
-
-
Wightman, B.1
Ha, I.2
Ruvkun, G.3
-
8
-
-
0034708122
-
The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans
-
Reinhart BJ, Slack F, Basson M, Pasquinelli A, Bettinger J, et al. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901–906. 10706289
-
(2000)
Nature
, vol.403
, pp. 901-906
-
-
Reinhart, B.J.1
Slack, F.2
Basson, M.3
Pasquinelli, A.4
Bettinger, J.5
-
9
-
-
0036544755
-
microRNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation
-
Lai EC, (2002) microRNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nature genetics 30: 363–364. 11896390
-
(2002)
Nature genetics
, vol.30
, pp. 363-364
-
-
Lai, E.C.1
-
10
-
-
0031767514
-
The K box, a conserved 3' UTR sequence motif, negatively regulates accumulation of Enhancer of split Complex transcripts
-
Lai EC, Burks C, Posakony JW, (1998) The K box, a conserved 3' UTR sequence motif, negatively regulates accumulation of Enhancer of split Complex transcripts. Development 125: 4077–4088. 9735368
-
(1998)
Development
, vol.125
, pp. 4077-4088
-
-
Lai, E.C.1
Burks, C.2
Posakony, J.W.3
-
11
-
-
0031469465
-
The Bearded box, a novel 3' UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression
-
Lai EC, Posakony JW, (1997) The Bearded box, a novel 3' UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression. Development 124: 4847–4856. 9428421
-
(1997)
Development
, vol.124
, pp. 4847-4856
-
-
Lai, E.C.1
Posakony, J.W.2
-
12
-
-
37749036293
-
Most Caenorhabditis elegans microRNAs Are Individually Not Essential for Development or Viability
-
Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, et al. (2007) Most Caenorhabditis elegans microRNAs Are Individually Not Essential for Development or Viability. PLoS genetics 3: e215. 18085825
-
(2007)
PLoS genetics
, vol.3
, pp. 215
-
-
Miska, E.A.1
Alvarez-Saavedra, E.2
Abbott, A.L.3
Lau, N.C.4
Hellman, A.B.5
-
13
-
-
49749129666
-
Lessons from microRNA mutants in worms, flies and mice
-
Smibert P, Lai EC, (2008) Lessons from microRNA mutants in worms, flies and mice. Cell cycle 7: 2500–2508. 18719388
-
(2008)
Cell cycle
, vol.7
, pp. 2500-2508
-
-
Smibert, P.1
Lai, E.C.2
-
14
-
-
49949116902
-
The impact of microRNAs on protein output
-
Baek D, Villen J, Shin C, Camargo FD, Gygi SP, et al. (2008) The impact of microRNAs on protein output. Nature 455: 64–71. doi: 10.1038/nature07242 18668037
-
(2008)
Nature
, vol.455
, pp. 64-71
-
-
Baek, D.1
Villen, J.2
Shin, C.3
Camargo, F.D.4
Gygi, S.P.5
-
15
-
-
49949117302
-
Widespread changes in protein synthesis induced by microRNAs
-
Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, et al. (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455: 58–63. doi: 10.1038/nature07228 18668040
-
(2008)
Nature
, vol.455
, pp. 58-63
-
-
Selbach, M.1
Schwanhausser, B.2
Thierfelder, N.3
Fang, Z.4
Khanin, R.5
-
16
-
-
84860324470
-
Roles for microRNAs in conferring robustness to biological processes
-
Ebert MS, Sharp PA, (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149: 515–524. doi: 10.1016/j.cell.2012.04.005 22541426
-
(2012)
Cell
, vol.149
, pp. 515-524
-
-
Ebert, M.S.1
Sharp, P.A.2
-
17
-
-
0038825783
-
Computational identification of Drosophila microRNA genes
-
Lai EC, Tomancak P, Williams RW, Rubin GM, (2003) Computational identification of Drosophila microRNA genes. Genome biology 4: R42.41–R42.20.
-
(2003)
Genome biology
, vol.4
, pp. 20-41
-
-
Lai, E.C.1
Tomancak, P.2
Williams, R.W.3
Rubin, G.M.4
-
18
-
-
40049098982
-
Hybrid neurons in a microRNA mutant are putative evolutionary intermediates in insect CO2 sensory systems
-
Cayirlioglu P, Kadow IG, Zhan X, Okamura K, Suh GS, et al. (2008) Hybrid neurons in a microRNA mutant are putative evolutionary intermediates in insect CO2 sensory systems. Science 319: 1256–1260. doi: 10.1126/science.1149483 18309086
-
(2008)
Science
, vol.319
, pp. 1256-1260
-
-
Cayirlioglu, P.1
Kadow, I.G.2
Zhan, X.3
Okamura, K.4
Suh, G.S.5
-
19
-
-
0019509303
-
Mutations that lead to reiterations in the cell lineages of C. elegans
-
Chalfie M, Horvitz HR, Sulston JE, (1981) Mutations that lead to reiterations in the cell lineages of C. elegans. Cell 24: 59–69. 7237544
-
(1981)
Cell
, vol.24
, pp. 59-69
-
-
Chalfie, M.1
Horvitz, H.R.2
Sulston, J.E.3
-
20
-
-
0347357618
-
A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans
-
Johnston RJ, Hobert O, (2003) A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426: 845–849. 14685240
-
(2003)
Nature
, vol.426
, pp. 845-849
-
-
Johnston, R.J.1
Hobert, O.2
-
21
-
-
67349132265
-
An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice
-
Lewis MA, Quint E, Glazier AM, Fuchs H, De Angelis MH, et al. (2009) An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nature genetics 41: 614–618. doi: 10.1038/ng.369 19363478
-
(2009)
Nature genetics
, vol.41
, pp. 614-618
-
-
Lewis, M.A.1
Quint, E.2
Glazier, A.M.3
Fuchs, H.4
De Angelis, M.H.5
-
22
-
-
67349223927
-
Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss
-
Mencia A, Modamio-Hoybjor S, Redshaw N, Morin M, Mayo-Merino F, et al. (2009) Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nature genetics 41: 609–613. doi: 10.1038/ng.355 19363479
-
(2009)
Nature genetics
, vol.41
, pp. 609-613
-
-
Mencia, A.1
Modamio-Hoybjor, S.2
Redshaw, N.3
Morin, M.4
Mayo-Merino, F.5
-
23
-
-
80155171400
-
A New Prospero and microRNA-279 Pathway Restricts CO2 Receptor Neuron Formation
-
Hartl M, Loschek LF, Stephan D, Siju KP, Knappmeyer C, et al. (2011) A New Prospero and microRNA-279 Pathway Restricts CO2 Receptor Neuron Formation. The Journal of neuroscience: the official journal of the Society for Neuroscience 31: 15660–15673. doi: 10.1523/JNEUROSCI.2592-11.2011 22049409
-
(2011)
The Journal of neuroscience: the official journal of the Society for Neuroscience
, vol.31
, pp. 15660-15673
-
-
Hartl, M.1
Loschek, L.F.2
Stephan, D.3
Siju, K.P.4
Knappmeyer, C.5
-
24
-
-
84857367540
-
Regulation of Circadian Behavioral Output via a MicroRNA-JAK/STAT Circuit
-
Luo W, Sehgal A, (2012) Regulation of Circadian Behavioral Output via a MicroRNA-JAK/STAT Circuit. Cell 148: 765–779. doi: 10.1016/j.cell.2011.12.024 22305007
-
(2012)
Cell
, vol.148
, pp. 765-779
-
-
Luo, W.1
Sehgal, A.2
-
25
-
-
80052476313
-
miRNA-mediated feedback inhibition of JAK/STAT morphogen signalling establishes a cell fate threshold
-
Yoon WH, Meinhardt H, Montell DJ, (2011) miRNA-mediated feedback inhibition of JAK/STAT morphogen signalling establishes a cell fate threshold. Nature cell biology 13: 1062–1069. doi: 10.1038/ncb2316 21857668
-
(2011)
Nature cell biology
, vol.13
, pp. 1062-1069
-
-
Yoon, W.H.1
Meinhardt, H.2
Montell, D.J.3
-
26
-
-
38149071979
-
Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs
-
Ruby JG, Stark A, Johnston WK, Kellis M, Bartel DP, et al. (2007) Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome research 17: 1850–1864. 17989254
-
(2007)
Genome research
, vol.17
, pp. 1850-1864
-
-
Ruby, J.G.1
Stark, A.2
Johnston, W.K.3
Kellis, M.4
Bartel, D.P.5
-
27
-
-
37249025294
-
Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes
-
Stark A, Kheradpour P, Parts L, Brennecke J, Hodges E, et al. (2007) Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes. Genome research 17: 1865–1879. 17989255
-
(2007)
Genome research
, vol.17
, pp. 1865-1879
-
-
Stark, A.1
Kheradpour, P.2
Parts, L.3
Brennecke, J.4
Hodges, E.5
-
28
-
-
84911463663
-
Diverse modes of evolutionary emergence and flux of conserved microRNA clusters
-
Mohammed J, Siepel A, Lai EC, (2014) Diverse modes of evolutionary emergence and flux of conserved microRNA clusters. RNA in press.
-
(2014)
RNA
-
-
Mohammed, J.1
Siepel, A.2
Lai, E.C.3
-
29
-
-
41449110693
-
Temporal Reciprocity of miRNAs and Their Targets during the Maternal-to-Zygotic Transition in Drosophila
-
Bushati N, Stark A, Brennecke J, Cohen SM, (2008) Temporal Reciprocity of miRNAs and Their Targets during the Maternal-to-Zygotic Transition in Drosophila. Curr Biol 18: 501–506. doi: 10.1016/j.cub.2008.02.081 18394895
-
(2008)
Curr Biol
, vol.18
, pp. 501-506
-
-
Bushati, N.1
Stark, A.2
Brennecke, J.3
Cohen, S.M.4
-
30
-
-
29144509665
-
Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development
-
Aboobaker AA, Tomancak P, Patel N, Rubin GM, Lai EC, (2005) Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proceedings of the National Academy of Sciences of the United States of America 102: 18017–18022. 16330759
-
(2005)
Proceedings of the National Academy of Sciences of the United States of America
, vol.102
, pp. 18017-18022
-
-
Aboobaker, A.A.1
Tomancak, P.2
Patel, N.3
Rubin, G.M.4
Lai, E.C.5
-
31
-
-
84904263912
-
Diversity of miRNAs, siRNAs and piRNAs across 25 Drosophila cell lines
-
Wen J, Mohammed J, Bortolamiol-Becet D, Tsai H, Robine N, et al. (2014) Diversity of miRNAs, siRNAs and piRNAs across 25 Drosophila cell lines. Genome research 24: 1236–1250. doi: 10.1101/gr.161554.113 24985917
-
(2014)
Genome research
, vol.24
, pp. 1236-1250
-
-
Wen, J.1
Mohammed, J.2
Bortolamiol-Becet, D.3
Tsai, H.4
Robine, N.5
-
32
-
-
84907401383
-
Diversity and dynamics of the Drosophila transcriptome
-
Brown JB, Boley N, Eisman R, May G, Stoiber M, et al. (2014) Diversity and dynamics of the Drosophila transcriptome. Nature 512: 393–399. 24670639
-
(2014)
Nature
, vol.512
, pp. 393-399
-
-
Brown, J.B.1
Boley, N.2
Eisman, R.3
May, G.4
Stoiber, M.5
-
33
-
-
79953043801
-
The developmental transcriptome of Drosophila melanogaster
-
Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, et al. (2011) The developmental transcriptome of Drosophila melanogaster. Nature 471: 473–479. doi: 10.1038/nature09715 21179090
-
(2011)
Nature
, vol.471
, pp. 473-479
-
-
Graveley, B.R.1
Brooks, A.N.2
Carlson, J.W.3
Duff, M.O.4
Landolin, J.M.5
-
34
-
-
33749153857
-
Biological function of unannotated transcription during the early development of Drosophila melanogaster
-
Manak JR, Dike S, Sementchenko V, Kapranov P, Biemar F, et al. (2006) Biological function of unannotated transcription during the early development of Drosophila melanogaster. Nature genetics 38: 1151–1158. 16951679
-
(2006)
Nature genetics
, vol.38
, pp. 1151-1158
-
-
Manak, J.R.1
Dike, S.2
Sementchenko, V.3
Kapranov, P.4
Biemar, F.5
-
35
-
-
33947224690
-
Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression
-
Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, et al. (2007) Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Molecular and cellular biology 27: 2240–2252. 17242205
-
(2007)
Molecular and cellular biology
, vol.27
, pp. 2240-2252
-
-
Linsley, P.S.1
Schelter, J.2
Burchard, J.3
Kibukawa, M.4
Martin, M.M.5
-
36
-
-
13944282215
-
Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs
-
Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, et al. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769–773. 15685193
-
(2005)
Nature
, vol.433
, pp. 769-773
-
-
Lim, L.P.1
Lau, N.C.2
Garrett-Engele, P.3
Grimson, A.4
Schelter, J.M.5
-
37
-
-
84925012369
-
Two decades of miRNA biology: lessons and challenges
-
Lai EC, (2015) Two decades of miRNA biology: lessons and challenges. RNA 21: 675–677. doi: 10.1261/rna.051193.115 25780186
-
(2015)
RNA
, vol.21
, pp. 675-677
-
-
Lai, E.C.1
-
38
-
-
84919481618
-
Systematic Study of Drosophila MicroRNA Functions Using a Collection of Targeted Knockout Mutations
-
Chen YW, Song S, Weng R, Verma P, Kugler JM, et al. (2014) Systematic Study of Drosophila MicroRNA Functions Using a Collection of Targeted Knockout Mutations. Developmental cell 31: 784–800. doi: 10.1016/j.devcel.2014.11.029 25535920
-
(2014)
Developmental cell
, vol.31
, pp. 784-800
-
-
Chen, Y.W.1
Song, S.2
Weng, R.3
Verma, P.4
Kugler, J.M.5
-
39
-
-
76749134307
-
Many families of C. elegans microRNAs are not essential for development or viability
-
Alvarez-Saavedra E, Horvitz HR, (2010) Many families of C. elegans microRNAs are not essential for development or viability. Curr Biol 20: 367–373. doi: 10.1016/j.cub.2009.12.051 20096582
-
(2010)
Curr Biol
, vol.20
, pp. 367-373
-
-
Alvarez-Saavedra, E.1
Horvitz, H.R.2
-
40
-
-
24144494563
-
The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans
-
Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP, et al. (2005) The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Developmental cell 9: 403–414. 16139228
-
(2005)
Developmental cell
, vol.9
, pp. 403-414
-
-
Abbott, A.L.1
Alvarez-Saavedra, E.2
Miska, E.A.3
Lau, N.C.4
Bartel, D.P.5
-
41
-
-
77957756295
-
Loss of individual microRNAs causes mutant phenotypes in sensitized genetic backgrounds in C. elegans
-
Brenner JL, Jasiewicz KL, Fahley AF, Kemp BJ, Abbott AL, (2010) Loss of individual microRNAs causes mutant phenotypes in sensitized genetic backgrounds in C. elegans. Curr Biol 20: 1321–1325. doi: 10.1016/j.cub.2010.05.062 20579881
-
(2010)
Curr Biol
, vol.20
, pp. 1321-1325
-
-
Brenner, J.L.1
Jasiewicz, K.L.2
Fahley, A.F.3
Kemp, B.J.4
Abbott, A.L.5
-
42
-
-
77956173287
-
A view from Drosophila: multiple biological functions for individual microRNAs
-
Smibert P, Lai EC, (2010) A view from Drosophila: multiple biological functions for individual microRNAs. Seminars in cell & developmental biology 21: 745–753.
-
(2010)
Seminars in cell & developmental biology
, vol.21
, pp. 745-753
-
-
Smibert, P.1
Lai, E.C.2
-
43
-
-
78751660177
-
Pervasive roles of microRNAs in cardiovascular biology
-
Small EM, Olson EN, (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469: 336–342. doi: 10.1038/nature09783 21248840
-
(2011)
Nature
, vol.469
, pp. 336-342
-
-
Small, E.M.1
Olson, E.N.2
-
44
-
-
64249144494
-
A microRNA imparts robustness against environmental fluctuation during development
-
Li X, Cassidy JJ, Reinke CA, Fischboeck S, Carthew RW, (2009) A microRNA imparts robustness against environmental fluctuation during development. Cell 137: 273–282. doi: 10.1016/j.cell.2009.01.058 19379693
-
(2009)
Cell
, vol.137
, pp. 273-282
-
-
Li, X.1
Cassidy, J.J.2
Reinke, C.A.3
Fischboeck, S.4
Carthew, R.W.5
-
45
-
-
0035955374
-
Identification of novel genes coding for small expressed RNAs
-
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T, (2001) Identification of novel genes coding for small expressed RNAs. Science 294: 853–858. 11679670
-
(2001)
Science
, vol.294
, pp. 853-858
-
-
Lagos-Quintana, M.1
Rauhut, R.2
Lendeckel, W.3
Tuschl, T.4
-
46
-
-
1642374097
-
Specificity of microRNA target selection in translational repression
-
Doench JG, Sharp PA, (2004) Specificity of microRNA target selection in translational repression. Genes & development 18: 504–511.
-
(2004)
Genes & development
, vol.18
, pp. 504-511
-
-
Doench, J.G.1
Sharp, P.A.2
-
47
-
-
18044377963
-
Principles of MicroRNA-Target Recognition
-
Brennecke J, Stark A, Russell RB, Cohen SM, (2005) Principles of MicroRNA-Target Recognition. PLoS biology 3: e85. 15723116
-
(2005)
PLoS biology
, vol.3
, pp. 85
-
-
Brennecke, J.1
Stark, A.2
Russell, R.B.3
Cohen, S.M.4
-
48
-
-
18244402404
-
Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs
-
Lai EC, Tam B, Rubin GM, (2005) Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes & development 19: 1067–1080.
-
(2005)
Genes & development
, vol.19
, pp. 1067-1080
-
-
Lai, E.C.1
Tam, B.2
Rubin, G.M.3
-
49
-
-
0346094457
-
Prediction of mammalian microRNA targets
-
Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB, (2003) Prediction of mammalian microRNA targets. Cell 115: 787–798. 14697198
-
(2003)
Cell
, vol.115
, pp. 787-798
-
-
Lewis, B.P.1
Shih, I.H.2
Jones-Rhoades, M.W.3
Bartel, D.P.4
Burge, C.B.5
-
50
-
-
4243170045
-
Identification of Drosophila MicroRNA Targets
-
Stark A, Brennecke J, Russell RB, Cohen SM, (2003) Identification of Drosophila MicroRNA Targets. PLoS biology 1: E60. 14691535
-
(2003)
PLoS biology
, vol.1
, pp. 60
-
-
Stark, A.1
Brennecke, J.2
Russell, R.B.3
Cohen, S.M.4
-
51
-
-
20944450160
-
Combinatorial microRNA target predictions
-
Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, et al. (2005) Combinatorial microRNA target predictions. Nature genetics 37: 495–500. 15806104
-
(2005)
Nature genetics
, vol.37
, pp. 495-500
-
-
Krek, A.1
Grun, D.2
Poy, M.N.3
Wolf, R.4
Rosenberg, L.5
-
52
-
-
0942301280
-
The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR
-
Vella MC, Choi EY, Lin SY, Reinert K, Slack FJ, (2004) The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. Genes & development 18: 132–137.
-
(2004)
Genes & development
, vol.18
, pp. 132-137
-
-
Vella, M.C.1
Choi, E.Y.2
Lin, S.Y.3
Reinert, K.4
Slack, F.J.5
-
53
-
-
69949098536
-
miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements
-
Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, et al. (2009) miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. Molecular cell 35: 610–625. doi: 10.1016/j.molcel.2009.08.020 19748357
-
(2009)
Molecular cell
, vol.35
, pp. 610-625
-
-
Lal, A.1
Navarro, F.2
Maher, C.A.3
Maliszewski, L.E.4
Yan, N.5
-
54
-
-
77955475953
-
Expanding the MicroRNA Targeting Code: Functional Sites with Centered Pairing
-
Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A, et al. (2010) Expanding the MicroRNA Targeting Code: Functional Sites with Centered Pairing. Molecular cell 38: 789–802. doi: 10.1016/j.molcel.2010.06.005 20620952
-
(2010)
Molecular cell
, vol.38
, pp. 789-802
-
-
Shin, C.1
Nam, J.W.2
Farh, K.K.3
Chiang, H.R.4
Shkumatava, A.5
-
55
-
-
34548396772
-
Genetic screens for Caenorhabditis elegans mutants defective in left/right asymmetric neuronal fate specification
-
Sarin S, O'Meara MM, Flowers EB, Antonio C, Poole RJ, et al. (2007) Genetic screens for Caenorhabditis elegans mutants defective in left/right asymmetric neuronal fate specification. Genetics 176: 2109–2130. 17717195
-
(2007)
Genetics
, vol.176
, pp. 2109-2130
-
-
Sarin, S.1
O'Meara, M.M.2
Flowers, E.B.3
Antonio, C.4
Poole, R.J.5
-
56
-
-
33645012544
-
Overgrowth caused by misexpression of a microRNA with dispensable wild-type function
-
Nairz K, Rottig C, Rintelen F, Zdobnov E, Moser M, et al. (2006) Overgrowth caused by misexpression of a microRNA with dispensable wild-type function. Developmental biology 291: 314–324. 16443211
-
(2006)
Developmental biology
, vol.291
, pp. 314-324
-
-
Nairz, K.1
Rottig, C.2
Rintelen, F.3
Zdobnov, E.4
Moser, M.5
-
57
-
-
84907303249
-
Understanding functional miRNA-target interactions in vivo by site-specific genome engineering
-
Bassett AR, Azzam G, Wheatley L, Tibbit C, Rajakumar T, et al. (2014) Understanding functional miRNA-target interactions in vivo by site-specific genome engineering. Nature communications 5: 4640. doi: 10.1038/ncomms5640 25135198
-
(2014)
Nature communications
, vol.5
, pp. 4640
-
-
Bassett, A.R.1
Azzam, G.2
Wheatley, L.3
Tibbit, C.4
Rajakumar, T.5
-
58
-
-
84922784540
-
The let-7 microRNA Directs Vulval Development through a Single Target
-
Ecsedi M, Rausch M, Grosshans H, (2015) The let-7 microRNA Directs Vulval Development through a Single Target. Developmental cell 32: 335–344. doi: 10.1016/j.devcel.2014.12.018 25669883
-
(2015)
Developmental cell
, vol.32
, pp. 335-344
-
-
Ecsedi, M.1
Rausch, M.2
Grosshans, H.3
-
59
-
-
47749087494
-
Tools for neuroanatomy and neurogenetics in Drosophila
-
Pfeiffer BD, Jenett A, Hammonds AS, Ngo TT, Misra S, et al. (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 105: 9715–9720. doi: 10.1073/pnas.0803697105 18621688
-
(2008)
Proceedings of the National Academy of Sciences of the United States of America
, vol.105
, pp. 9715-9720
-
-
Pfeiffer, B.D.1
Jenett, A.2
Hammonds, A.S.3
Ngo, T.T.4
Misra, S.5
-
60
-
-
33845698104
-
P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster
-
Venken KJ, He Y, Hoskins RA, Bellen HJ, (2006) P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314: 1747–1751. 17138868
-
(2006)
Science
, vol.314
, pp. 1747-1751
-
-
Venken, K.J.1
He, Y.2
Hoskins, R.A.3
Bellen, H.J.4
-
61
-
-
84864946315
-
A genome-wide transgenic resource for conditional expression of Drosophila microRNAs
-
Bejarano F, Bortolamiol-Becet D, Dai Q, Sun K, Saj A, et al. (2012) A genome-wide transgenic resource for conditional expression of Drosophila microRNAs. Development 139: 2821–2831. doi: 10.1242/dev.079939 22745315
-
(2012)
Development
, vol.139
, pp. 2821-2831
-
-
Bejarano, F.1
Bortolamiol-Becet, D.2
Dai, Q.3
Sun, K.4
Saj, A.5
-
62
-
-
0033544692
-
Cycling vrille expression is required for a functional Drosophila clock
-
Blau J, Young MW, (1999) Cycling vrille expression is required for a functional Drosophila clock. Cell 99: 661–671. 10612401
-
(1999)
Cell
, vol.99
, pp. 661-671
-
-
Blau, J.1
Young, M.W.2
-
63
-
-
33846091754
-
Two chemosensory receptors together mediate carbon dioxide detection in Drosophila
-
Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB, (2007) Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445: 86–90. 17167414
-
(2007)
Nature
, vol.445
, pp. 86-90
-
-
Jones, W.D.1
Cayirlioglu, P.2
Kadow, I.G.3
Vosshall, L.B.4
-
64
-
-
78249275827
-
Processing circadian data collected from the Drosophila Activity Monitoring (DAM) System
-
Pfeiffenberger C, Lear BC, Keegan KP, Allada R, (2010) Processing circadian data collected from the Drosophila Activity Monitoring (DAM) System. Cold Spring Harbor protocols 2010: pdb prot5519. doi: 10.1101/pdb.prot5519 21041392
-
(2010)
Cold Spring Harbor protocols
-
-
Pfeiffenberger, C.1
Lear, B.C.2
Keegan, K.P.3
Allada, R.4
-
65
-
-
34447107760
-
The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila
-
Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC, (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130: 89–100. 17599402
-
(2007)
Cell
, vol.130
, pp. 89-100
-
-
Okamura, K.1
Hagen, J.W.2
Duan, H.3
Tyler, D.M.4
Lai, E.C.5
|