-
1
-
-
27844439373
-
A framework for learning predictive structures from multiple tasks and unlabeled data
-
R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research, 6: 01, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 01
-
-
Ando, R.K.1
Zhang, T.2
-
2
-
-
84864063089
-
Multi-task feature learning
-
Vancouver, BC, Canada
-
A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In Advances in Neural Information Processing Systems, pages 41-48, Vancouver, BC, Canada, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, pp. 41-48
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
3
-
-
0031185845
-
Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection
-
JUL
-
P. Belhumeur, J. Hespanha, and D. Kriegman. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7): 711-720, JUL 1997.
-
(1997)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.19
, Issue.7
, pp. 711-720
-
-
Belhumeur, P.1
Hespanha, J.2
Kriegman, D.3
-
4
-
-
0031620208
-
Combining labeled and unlabeled data with co-training
-
New York, NY, USA ACM
-
A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In Proceedings of the eleventh annual conference on Computational learning theory, COLT'98, pages 92-100, New York, NY, USA, 1998. ACM.
-
(1998)
Proceedings of the Eleventh Annual Conference on Computational Learning Theory, COLT'98
, pp. 92-100
-
-
Blum, A.1
Mitchell, T.2
-
5
-
-
0031189914
-
Multitask learning
-
R. Caruana. Multitask learning. Machine learning, 28(1): 41-75, 1997.
-
(1997)
Machine Learning
, vol.28
, Issue.1
, pp. 41-75
-
-
Caruana, R.1
-
6
-
-
71149094644
-
A convex formulation for learning shared structures from multiple tasks
-
Montreal, QC, Canada
-
J. Chen, L. Tang, J. Liu, and J. Ye. A convex formulation for learning shared structures from multiple tasks. In Proceedings of the 26th International Conference On Machine Learning, ICML 2009, pages 137-144, Montreal, QC, Canada, 2009.
-
(2009)
Proceedings of the 26th International Conference on Machine Learning, ICML 2009
, pp. 137-144
-
-
Chen, J.1
Tang, L.2
Liu, J.3
Ye, J.4
-
7
-
-
80052677096
-
Integrating low-rank and group-sparse structures for robust multi-task learning
-
San Diego, CA, United states
-
J. Chen, J. Zhou, and J. Ye. Integrating low-rank and group-sparse structures for robust multi-task learning. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 42-50, San Diego, CA, United states, 2011.
-
(2011)
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 42-50
-
-
Chen, J.1
Zhou, J.2
Ye, J.3
-
8
-
-
85161973444
-
Predictive subspace learning for multi-view data: A large margin approach
-
Vancouver, BC, Canada
-
N. Chen, J. Zhu, and E. P. Xing. Predictive subspace learning for multi-view data: A large margin approach. In Annual Conference on Neural Information Processing Systems 2010, NIPS 2010, Vancouver, BC, Canada, 2010.
-
(2010)
Annual Conference on Neural Information Processing Systems 2010, NIPS 2010
-
-
Chen, N.1
Zhu, J.2
Xing, E.P.3
-
9
-
-
12244250351
-
Regularized multi-task learning
-
Seattle, WA, United states
-
T. Evgeniou and M. Pontil. Regularized multi-task learning. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 109-117, Seattle, WA, United states, 2004.
-
(2004)
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 109-117
-
-
Evgeniou, T.1
Pontil, M.2
-
10
-
-
33749404380
-
Two view learning: SVM-2k, theory and practice
-
Vancouver, BC, Canada
-
J. D. Farquhar, D. R. Hardoon, H. Meng, J. Shawe-Taylor, and S. Szedmak. Two view learning: Svm-2k, theory and practice. In Advances in Neural Information Processing Systems, pages 355-362, Vancouver, BC, Canada, 2005.
-
(2005)
Advances in Neural Information Processing Systems
, pp. 355-362
-
-
Farquhar, J.D.1
Hardoon, D.R.2
Meng, H.3
Shawe-Taylor, J.4
Szedmak, S.5
-
13
-
-
10044285992
-
Canonical correlation analysis: An overview with application to learning methods
-
D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16(12): 2639-2664, 2004.
-
(2004)
Neural Computation
, vol.16
, Issue.12
, pp. 2639-2664
-
-
Hardoon, D.R.1
Szedmak, S.2
Shawe-Taylor, J.3
-
14
-
-
80053436238
-
A graph-based framework for multi-task multi-view learning
-
Bellevue, WA, United states
-
J. He and R. Lawrence. A graph-based framework for multi-task multi-view learning. In Proceedings of the 28th International Conference on Machine Learning, ICML 2011, pages 25-32, Bellevue, WA, United states, 2011.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning, ICML 2011
, pp. 25-32
-
-
He, J.1
Lawrence, R.2
-
15
-
-
85162062975
-
A dirty model for multi-task learning
-
Vancouver, BC, Canada
-
A. Jalali, P. Ravikumar, S. Sanghavi, and C. Ruan. A dirty model for multi-task learning. In 24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010, Vancouver, BC, Canada, 2010.
-
(2010)
24th Annual Conference on Neural Information Processing Systems 2010, NIPS 2010
-
-
Jalali, A.1
Ravikumar, P.2
Sanghavi, S.3
Ruan, C.4
-
16
-
-
84886471848
-
Shared structure learning for multiple tasks with multiple views
-
Prague, Czech republic
-
X. Jin, F. Zhuang, S. Wang, Q. He, and Z. Shi. Shared structure learning for multiple tasks with multiple views. In Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2013), Volume 8189 LNAI, pages 353-368, Prague, Czech republic, 2013.
-
(2013)
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2013), Volume 8189 LNAI
, pp. 353-368
-
-
Jin, X.1
Zhuang, F.2
Wang, S.3
He, Q.4
Shi, Z.5
-
19
-
-
0347380229
-
The CMU pose, illumination, and expression database
-
DEC
-
T. Sim, S. Baker, and M. Bsat. The CMU pose, illumination, and expression database. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12): 1615-1618, DEC 2003.
-
(2003)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.25
, Issue.12
, pp. 1615-1618
-
-
Sim, T.1
Baker, S.2
Bsat, M.3
-
21
-
-
56449131204
-
An rkhs for multi-view learning and manifold co-regularization
-
Helsinki, Finland
-
V. Sindhwani and D. S. Rosenberg. An rkhs for multi-view learning and manifold co-regularization. In ICML, pages 976-983, Helsinki, Finland, 2008.
-
(2008)
ICML
, pp. 976-983
-
-
Sindhwani, V.1
Rosenberg, D.S.2
-
22
-
-
83855165736
-
Bayesian multitask classification with Gaussian process priors
-
G. Skolidis and G. Sanguinetti. Bayesian multitask classification with gaussian process priors. IEEE Transactions on Neural Networks, 22(12): 2011-2021, 2011.
-
(2011)
IEEE Transactions on Neural Networks
, vol.22
, Issue.12
, pp. 2011-2021
-
-
Skolidis, G.1
Sanguinetti, G.2
-
23
-
-
35148823228
-
Trace ratio vs. Ratio trace for dimensionality reduction
-
Minneapolis, MN, United states
-
H. Wang, S. Yan, D. Xu, X. Tang, and T. Huang. Trace ratio vs. ratio trace for dimensionality reduction. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, United states, 2007.
-
(2007)
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
-
-
Wang, H.1
Yan, S.2
Xu, D.3
Tang, X.4
Huang, T.5
-
24
-
-
80555131692
-
Bayesian co-training
-
S. Yu, B. Krishnapuram, R. Rosales, and R. Bharat Rao. Bayesian co-training. Journal of Machine Learning Research, 12: 2649-2680, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2649-2680
-
-
Yu, S.1
Krishnapuram, B.2
Rosales, R.3
Bharat Rao, R.4
-
25
-
-
34547975729
-
Robust multi-task learning with t-processes
-
Corvalis, OR, United states
-
S. Yu, V. Tresp, and K. Yu. Robust multi-task learning with t-processes. In Twenty-Fourth International Conference on Machine Learning, Volume 227, pages 1103-1110, Corvalis, OR, United states, 2007.
-
(2007)
Twenty-Fourth International Conference on Machine Learning
, vol.227
, pp. 1103-1110
-
-
Yu, S.1
Tresp, V.2
Yu, K.3
-
27
-
-
80055050343
-
Multi-task learning in heterogeneous feature spaces
-
San Francisco, CA, United states
-
Y. Zhang and D.-Y. Yeung. Multi-task learning in heterogeneous feature spaces. In Proceedings of the AAAI Conference on Artificial Intelligence, Volume 1, pages 574-579, San Francisco, CA, United states, 2011.
-
(2011)
Proceedings of the AAAI Conference on Artificial Intelligence
, vol.1
, pp. 574-579
-
-
Zhang, Y.1
Yeung, D.-Y.2
|