-
1
-
-
26944451289
-
A PAC-style model for learning from labeled and unlabeled data
-
MIT Press
-
M. Balcan and A. Blum. A PAC-style model for learning from labeled and unlabeled data. In Semi-Supervised Learning, pages 111-126. MIT Press, 2006.
-
(2006)
Semi-supervised Learning
, pp. 111-126
-
-
Balcan, M.1
Blum, A.2
-
2
-
-
33750738734
-
Co-training and expansion: Towards bridging theory and practice
-
M. Balcan, A. Blum, and K. Yang. Co-training and expansion: Towards bridging theory and practice. In NIPS, 2004.
-
(2004)
NIPS
-
-
Balcan, M.1
Blum, A.2
Yang, K.3
-
3
-
-
79958795748
-
Estimation of mixture models using Co-EM
-
S. Bickel and T. Scheffer. Estimation of mixture models using Co-EM. In ECML, 2005.
-
(2005)
ECML
-
-
Bickel, S.1
Scheffer, T.2
-
4
-
-
80053642750
-
VOILA: Efficient feature-value acquisition for classification
-
M. Bilgic and L. Getoor. VOILA: Efficient feature-value acquisition for classification. In AAAI, 2007.
-
(2007)
AAAI
-
-
Bilgic, M.1
Getoor, L.2
-
5
-
-
0031620208
-
Combining labeled and unlabeled data with co-training
-
A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In COLT, 1998.
-
(1998)
COLT
-
-
Blum, A.1
Mitchell, T.2
-
6
-
-
14344251008
-
Co-EM support vector learning
-
U. Brefeld and T. Scheffer. Co-EM support vector learning. In ICML, 2004.
-
(2004)
ICML
-
-
Brefeld, U.1
Scheffer, T.2
-
7
-
-
34250767770
-
Efficient co-regularised least squares regression
-
U. Brefeld, T. Gärtner, T. Scheffer, and S. Wrobel. Efficient co-regularised least squares regression. In ICML, pages 137-144, 2006.
-
(2006)
ICML
, pp. 137-144
-
-
Brefeld, U.1
Gärtner, T.2
Scheffer, T.3
Wrobel, S.4
-
8
-
-
34748814336
-
Sequential FDG-PET/CT reliably predicts response of locally advanced rectal cancer to neo-adjuvant chemo-radiation therapy
-
C. Capirci, L. Rampin, P. Erba, F. Galeotti, G. Crepaldi, E. Banti, M. Gava, S. Fanti, G. Mariani, P. Muzzio, and D. Rubello. Sequential FDG-PET/CT reliably predicts response of locally advanced rectal cancer to neo-adjuvant chemo-radiation therapy. Eur J Nucl Med Mol Imaging, 34, 2007.
-
(2007)
Eur J Nucl Med Mol Imaging
, pp. 34
-
-
Capirci, C.1
Rampin, L.2
Erba, P.3
Galeotti, F.4
Crepaldi, G.5
Banti, E.6
Gava, M.7
Fanti, S.8
Mariani, G.9
Muzzio, P.10
Rubello, D.11
-
9
-
-
4043061882
-
Variational Bayesian model selection for mixture distributions
-
A. Corduneanu and C. M. Bishop. Variational Bayesian model selection for mixture distributions. In Workshop AI and Statistics, pages 27-34, 2001.
-
(2001)
Workshop AI and Statistics
, pp. 27-34
-
-
Corduneanu, A.1
Bishop, C.M.2
-
12
-
-
67349199539
-
Development and external validation of prognostic model for 2-year survival of non-small-cell lung cancer patients treated with chemoradiotherapy
-
C. Dehing-Oberije, S. Yu, D. De Ruysscher, S. Meerschout, K. van Beek, Y. Lievens, J. van Meerbeeck, W. de Neve, G. Fung, B. Rao, S. Krishnan, H. van der Weide, and P. Lambin. Development and external validation of prognostic model for 2-year survival of non-small-cell lung cancer patients treated with chemoradiotherapy. Int J Radiat Oncol Biol Phys, 2009.
-
(2009)
Int J Radiat Oncol Biol Phys
-
-
Dehing-Oberije, C.1
Yu, S.2
De Ruysscher, D.3
Meerschout, S.4
Van Beek, K.5
Lievens, Y.6
Van Meerbeeck, J.7
De Neve, W.8
Fung, G.9
Rao, B.10
Krishnan, S.11
Van Der Weide, H.12
Lambin, P.13
-
13
-
-
33749404380
-
Two view learning: SVM-2K, Theory and Practice
-
J. Farquhar, D. Hardoon, H. Meng, J-S. Taylor, and S. Szedmak. Two view learning: SVM-2K, Theory and Practice. In NIPS, 2005.
-
(2005)
NIPS
-
-
Farquhar, J.1
Hardoon, D.2
Meng, H.3
Taylor, J.-S.4
Szedmak, S.5
-
15
-
-
3242750450
-
Email classification with co-training
-
University of Ottawa
-
S. Kiritchenko and S. Matwin. Email classification with co-training. Technical report, University of Ottawa, 2002.
-
(2002)
Technical Report
-
-
Kiritchenko, S.1
Matwin, S.2
-
16
-
-
41549146576
-
Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies
-
A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies. JMLR, 9:235-284, 2008. (Pubitemid 351469021)
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 235-284
-
-
Krause, A.1
Singh, A.2
Guestrin, C.3
-
17
-
-
31844449453
-
On semisupervised classification
-
B. Krishnapuram, D. Williams, Y. Xue, A. Hartemink, L. Carin, and M. Figueiredo. On semisupervised classification. In NIPS, 2004.
-
(2004)
NIPS
-
-
Krishnapuram, B.1
Williams, D.2
Xue, Y.3
Hartemink, A.4
Carin, L.5
Figueiredo, M.6
-
18
-
-
0000695404
-
Information-based objective functions for active data selection
-
D. MacKay. Information-based objective functions for active data selection. Neural Computation, 4:590-604, 1992.
-
(1992)
Neural Computation
, vol.4
, pp. 590-604
-
-
MacKay, D.1
-
21
-
-
2142727946
-
Limitations of co-training for natural language learning from large datasets
-
D. Pierce and C. Cardie. Limitations of co-training for natural language learning from large datasets. In EMNLP-2001, 2001.
-
(2001)
EMNLP-2001
-
-
Pierce, D.1
Cardie, C.2
-
23
-
-
56449131204
-
An RKHS for multi-view learning and manifold coregularization
-
V. Sindhwani and D. S. Rosenberg. An RKHS for multi-view learning and manifold coregularization. In ICML, 2008.
-
(2008)
ICML
-
-
Sindhwani, V.1
Rosenberg, D.S.2
-
25
-
-
84898075155
-
An information theoretic framework for multi-view learning
-
K. Sridharan and S. M. Kakade. An information theoretic framework for multi-view learning. In COLT, 2008.
-
(2008)
COLT
-
-
Sridharan, K.1
Kakade, S.M.2
-
29
-
-
85162005549
-
Bayesian co-training
-
S. Yu, B. Krishnapuram, R. Rosales, H. Steck, and B. Rao. Bayesian co-training. In NIPS, 2008.
-
(2008)
NIPS
-
-
Yu, S.1
Krishnapuram, B.2
Rosales, R.3
Steck, H.4
Rao, B.5
|