메뉴 건너뛰기




Volumn 4, Issue JULY 2015, 2015, Pages 1-25

Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state

Author keywords

[No Author keywords available]

Indexed keywords

ACTION POTENTIAL; ANIMAL EXPERIMENT; ANIMAL TISSUE; ARTICLE; BRAIN CORTEX; CALCIUM CELL LEVEL; CEREBROSPINAL FLUID; CONTROLLED STUDY; CRANIOTOMY; FLUORESCENCE MICROSCOPY; HABITUATION; IMAGE ANALYSIS; MATHEMATICAL ANALYSIS; NERVE CONDUCTION; NONHUMAN; PROTEIN EXPRESSION; PYRAMIDAL NERVE CELL; RAT; SPIKE WAVE; SYNAPTIC POTENTIAL; SYNAPTIC TRANSMISSION; VENTRAL TEGMENTUM; WAKEFULNESS; ANIMAL; BIOLOGICAL MODEL; CYTOLOGY; IMAGE PROCESSING; MULTIPHOTON MICROSCOPY; PHYSIOLOGY;

EID: 84937403689     PISSN: None     EISSN: 2050084X     Source Type: Journal    
DOI: 10.7554/eLife.07224     Document Type: Article
Times cited : (149)

References (122)
  • 1
    • 0029767876 scopus 로고    scopus 로고
    • Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses
    • Arieli A, Sterkin A, Grinvald A, Aertsen A. 1996. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273:1868–1871. doi: 10.1126/science.273.5283.1868.
    • (1996) Science , vol.273 , pp. 1868-1871
    • Arieli, A.1    Sterkin, A.2    Grinvald, A.3    Aertsen, A.4
  • 2
    • 33745726849 scopus 로고    scopus 로고
    • Neural correlations, population coding and computation. Nature Reviews
    • Averbeck BB, Latham PE, Pouget A. 2006. Neural correlations, population coding and computation. Nature Reviews. Neuroscience 7:358–366. doi: 10.1038/nrn1888.
    • (2006) Neuroscience , vol.7 , pp. 358-366
    • Averbeck, B.B.1    Latham, P.E.2    Pouget, A.3
  • 3
    • 84861671125 scopus 로고    scopus 로고
    • Experimental evidence for sparse firing in the neocortex
    • Barth AL, Poulet JF. 2012. Experimental evidence for sparse firing in the neocortex. Trends in Neurosciences 35: 345–355. doi: 10.1016/j.tins.2012.03.008.
    • (2012) Trends in Neurosciences , vol.35 , pp. 345-355
    • Barth, A.L.1    Poulet, J.F.2
  • 4
    • 0348010295 scopus 로고    scopus 로고
    • Neuronal avalanches in neocortical circuits
    • Beggs JM, Plenz D. 2003. Neuronal avalanches in neocortical circuits. The Journal of Neuroscience 23: 11167–11177.
    • (2003) The Journal of Neuroscience , vol.23 , pp. 11167-11177
    • Beggs, J.M.1    Plenz, D.2
  • 5
    • 2642572763 scopus 로고    scopus 로고
    • Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures
    • Beggs JM, Plenz D. 2004. Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. The Journal of Neuroscience 24:5216–5229. doi: 10.1523/JNEUROSCI.0540-04.2004.
    • (2004) The Journal of Neuroscience , vol.24 , pp. 5216-5229
    • Beggs, J.M.1    Plenz, D.2
  • 6
    • 84866347370 scopus 로고    scopus 로고
    • Being critical of criticality in the brain
    • Beggs JM, Timme N. 2012. Being critical of criticality in the brain. Frontiers in Physiology 3:163. doi: 10.3389/fphys.2012.00163.
    • (2012) Frontiers in Physiology , vol.3
    • Beggs, J.M.1    Timme, N.2
  • 8
    • 2942552269 scopus 로고    scopus 로고
    • Real-time computation at the edge of chaos in recurrent neural networks
    • Bertschinger N, Natschläger T. 2004. Real-time computation at the edge of chaos in recurrent neural networks. Neural Computation 16:1413–1436. doi: 10.1162/089976604323057443.
    • (2004) Neural Computation , vol.16 , pp. 1413-1436
    • Bertschinger, N.1    Natschläger, T.2
  • 9
    • 0034487599 scopus 로고    scopus 로고
    • Dynamics of networks of randomly connected excitatory and inhibitory spiking neurons
    • Brunel N. 2000. Dynamics of networks of randomly connected excitatory and inhibitory spiking neurons. Journal of Physiology, Paris 94:445–463. doi: 10.1016/S0928-4257(00)01084-6.
    • (2000) Journal of Physiology, Paris , vol.94 , pp. 445-463
    • Brunel, N.1
  • 10
    • 0017082266 scopus 로고
    • Spike initiation by transmembrane current: A white-noise analysis
    • Bryant HL, Segundo JP. 1976. Spike initiation by transmembrane current: a white-noise analysis. The Journal of Physiology 260:279–314. doi: 10.1113/jphysiol.1976.sp011516.
    • (1976) The Journal of Physiology , vol.260 , pp. 279-314
    • Bryant, H.L.1    Segundo, J.P.2
  • 12
    • 21844522047 scopus 로고
    • Self-organized criticality in a cellular automaton model of pulse-coupled integrate-and-fire neurons
    • Chen DM, Wu S, Guo A, Yang ZR. 1995. Self-organized criticality in a cellular automaton model of pulse-coupled integrate-and-fire neurons. Journal of Physics A: Mathematical and General Physics 28:5177–5182. doi: 10.1088/0305-4470/28/18/009.
    • (1995) Journal of Physics A: Mathematical and General Physics , vol.28 , pp. 5177-5182
    • Chen, D.M.1    Wu, S.2    Guo, A.3    Yang, Z.R.4
  • 13
    • 77957565867 scopus 로고    scopus 로고
    • Emergent complex neural dynamics
    • Chialvo DR. 2010. Emergent complex neural dynamics. Nature Physics 6:744–750. doi: 10.1038/nphys1803.
    • (2010) Nature Physics , vol.6 , pp. 744-750
    • Chialvo, D.R.1
  • 15
    • 65549085067 scopus 로고    scopus 로고
    • Power-law distributions in empirical data
    • Clauset A, Shalizi CR, Newman MEJ. 2009. Power-law distributions in empirical data. SIAM Review 51:42. doi: 10.1137/070710111.
    • (2009) SIAM Review , vol.51
    • Clauset, A.1    Shalizi, C.R.2    Newman, M.3
  • 16
    • 0038348981 scopus 로고    scopus 로고
    • Attractor dynamics of network UP states in the neocortex
    • Cossart R, Aronov D, Yuste R. 2003. Attractor dynamics of network UP states in the neocortex. Nature 423: 283–288. doi: 10.1038/nature01614.
    • (2003) Nature , vol.423 , pp. 283-288
    • Cossart, R.1    Aronov, D.2    Yuste, R.3
  • 20
    • 37649028492 scopus 로고    scopus 로고
    • Finite-size effects of avalanche dynamics. Physical Review. E, Statistical
    • Eurich CW, Herrmann JM, Ernst UA. 2002. Finite-size effects of avalanche dynamics. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 66:066137. doi: 10.1103/PhysRevE.66.066137.
    • (2002) Nonlinear, and Soft Matter Physics , vol.66
    • Eurich, C.W.1    Herrmann, J.M.2    Ernst, U.A.3
  • 21
    • 34548014282 scopus 로고    scopus 로고
    • Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews
    • Fox MD, Raichle ME. 2007. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience 8:700–711. doi: 10.1038/nrn2201.
    • (2007) Neuroscience , vol.8 , pp. 700-711
    • Fox, M.D.1    Raichle, M.E.2
  • 22
    • 84866463827 scopus 로고    scopus 로고
    • What kind of noise is brain noise: Anomalous scaling behavior of the resting brain activity fluctuations
    • Fraiman D, Chialvo DR. 2012. What kind of noise is brain noise: anomalous scaling behavior of the resting brain activity fluctuations. Frontiers Physiology 3:307. doi: 10.3389/fphys.2012.00307.
    • (2012) Frontiers Physiology , vol.3
    • Fraiman, D.1    Chialvo, D.R.2
  • 23
    • 84875848306 scopus 로고    scopus 로고
    • Hierarchical networks, power laws, and neuronal avalanches
    • Friedman EJ, Landsberg AS. 2013. Hierarchical networks, power laws, and neuronal avalanches. Chaos 23:013135. doi: 10.1063/1.4793782.
    • (2013) Chaos , vol.23
    • Friedman, E.J.1    Landsberg, A.S.2
  • 25
    • 78649735564 scopus 로고    scopus 로고
    • Dynamics of excitability over extended timescales in cultured cortical neurons
    • Gal A, Eytan D, Wallach A, Sandler M, Schiller J, Marom S. 2010. Dynamics of excitability over extended timescales in cultured cortical neurons. The Journal of Neuroscience 30:16332–16342. doi: 10.1523/JNEUROSCI.4859-10.2010.
    • (2010) The Journal of Neuroscience , vol.30 , pp. 16332-16342
    • Gal, A.1    Eytan, D.2    Wallach, A.3    Sandler, M.4    Schiller, J.5    Marom, S.6
  • 26
    • 84891672913 scopus 로고    scopus 로고
    • Self-organized criticality in single-neuron excitability. Physical Review. E, Statistical
    • Gal A, Marom S. 2013. Self-organized criticality in single-neuron excitability. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 88:062717.
    • (2013) Nonlinear, and Soft Matter Physics , vol.88
    • Gal, A.1    Marom, S.2
  • 27
    • 0027263732 scopus 로고
    • How independent are the messages carried by adjacent inferior temporal cortical neurons?
    • Gawne TJ, Richmond BJ. 1993. How independent are the messages carried by adjacent inferior temporal cortical neurons? The Journal of Neuroscience 13:2758–2771.
    • (1993) The Journal of Neuroscience , vol.13 , pp. 2758-2771
    • Gawne, T.J.1    Richmond, B.J.2
  • 28
    • 44949238767 scopus 로고    scopus 로고
    • Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3
    • Gireesh ED, Plenz D. 2008. Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3. Proceedings of the National Academy of Sciences of USA 105:7576–7581. doi: 10.1073/pnas.0800537105.
    • (2008) Proceedings of the National Academy of Sciences of USA , vol.105 , pp. 7576-7581
    • Gireesh, E.D.1    Plenz, D.2
  • 29
    • 46049110525 scopus 로고    scopus 로고
    • Population imaging of ongoing neuronal activity in the visual cortex of awake rats
    • Greenberg DS, Houweling AR, Kerr JN. 2008. Population imaging of ongoing neuronal activity in the visual cortex of awake rats. Nature Neuroscience 11:749–751. doi: 10.1038/nn.2140.
    • (2008) Nature Neuroscience , vol.11 , pp. 749-751
    • Greenberg, D.S.1    Houweling, A.R.2    Kerr, J.N.3
  • 30
    • 1842427969 scopus 로고    scopus 로고
    • Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI
    • Greicius MD, Srivastava G, Reiss AL, Menon V. 2004. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proceedings of the National Academy of Sciences of USA 101:4637–4642. doi: 10.1073/pnas.0308627101.
    • (2004) Proceedings of the National Academy of Sciences of USA , vol.101 , pp. 4637-4642
    • Greicius, M.D.1    Srivastava, G.2    Reiss, A.L.3    Menon, V.4
  • 32
    • 84876744243 scopus 로고    scopus 로고
    • Brain organization into resting state networks emerges at criticality on a model of the human connectome
    • Haimovici A, Tagliazucchi E, Balenzuela P, Chialvo DR. 2013. Brain organization into resting state networks emerges at criticality on a model of the human connectome. Physical Review Letters 110:178101. doi: 10.1103/PhysRevLett.110.178101.
    • (2013) Physical Review Letters , vol.110
    • Haimovici, A.1    Tagliazucchi, E.2    Balenzuela, P.3    Chialvo, D.R.4
  • 35
    • 2142773944 scopus 로고    scopus 로고
    • Synfire chains and cortical songs: Temporal modules of cortical activity
    • Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, Yuste R. 2004. Synfire chains and cortical songs: temporal modules of cortical activity. Science 304:559–564. doi: 10.1126/science.1093173.
    • (2004) Science , vol.304 , pp. 559-564
    • Ikegaya, Y.1    Aaron, G.2    Cossart, R.3    Aronov, D.4    Lampl, I.5    Ferster, D.6    Yuste, R.7
  • 38
    • 84861695331 scopus 로고    scopus 로고
    • Representation of visual scenes by local neuronal populations in layer 2/3 of mouse visual cortex
    • Kampa BM, Roth MM, Göbel W, Helmchen F. 2011. Representation of visual scenes by local neuronal populations in layer 2/3 of mouse visual cortex. Frontiers in Neural Circuits 5:18. doi: 10.3389/fncir.2011.00018.
    • (2011) Frontiers in Neural Circuits , vol.5
    • Kampa, B.M.1    Roth, M.M.2    Göbel, W.3    Helmchen, F.4
  • 40
    • 33646856921 scopus 로고    scopus 로고
    • Optimal dynamical range of excitable networks at criticality
    • Kinouchi O, Copelli M. 2006. Optimal dynamical range of excitable networks at criticality. Nature Physics 2: 348–351. doi: 10.1038/nphys289.
    • (2006) Nature Physics , vol.2 , pp. 348-351
    • Kinouchi, O.1    Copelli, M.2
  • 41
    • 79957545106 scopus 로고    scopus 로고
    • Statistical analyses support power law distributions found in neuronal avalanches
    • Klaus A, Yu S, Plenz D. 2011. Statistical analyses support power law distributions found in neuronal avalanches. PLOS ONE 6:e19779. doi: 10.1371/journal.pone.0019779.
    • (2011) PLOS ONE , vol.6
    • Klaus, A.1    Yu, S.2    Plenz, D.3
  • 43
    • 45549109207 scopus 로고    scopus 로고
    • Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model
    • Kumar A, Rotter S, Aertsen A. 2008. Conditions for propagating synchronous spiking and asynchronous firing rates in a cortical network model. The Journal of Neuroscience 28:5268–5280. doi: 10.1523/JNEUROSCI.2542-07.2008.
    • (2008) The Journal of Neuroscience , vol.28 , pp. 5268-5280
    • Kumar, A.1    Rotter, S.2    Aertsen, A.3
  • 44
    • 84894523799 scopus 로고    scopus 로고
    • Maximum likelihood estimators for truncated and censored powerlaw distributions show how neuronal avalanches may be misevaluated. Physical Review. E, Statistical
    • Langlois D, Cousineau D, Thivierge JP. 2014. Maximum likelihood estimators for truncated and censored powerlaw distributions show how neuronal avalanches may be misevaluated. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 89:012709.
    • (2014) Nonlinear, and Soft Matter Physics , vol.89
    • Langlois, D.1    Cousineau, D.2    Thivierge, J.P.3
  • 46
    • 36749042711 scopus 로고    scopus 로고
    • Dynamical synapses causing self-organized criticality in neural networks
    • Levina A, Hermann JM, Geisel T. 2007. Dynamical synapses causing self-organized criticality in neural networks. Nature Physics 3:857–860.
    • (2007) Nature Physics , vol.3 , pp. 857-860
    • Levina, A.1    Hermann, J.M.2    Geisel, T.3
  • 47
    • 63749125159 scopus 로고    scopus 로고
    • Phase transitions towards criticality in a neural system with adaptive interactions
    • Levina A, Herrmann JM, Geisel T. 2009. Phase transitions towards criticality in a neural system with adaptive interactions. Physical Review Letters 102:118110. doi: 10.1103/PhysRevLett.102.118110.
    • (2009) Physical Review Letters , vol.102
    • Levina, A.1    Herrmann, J.M.2    Geisel, T.3
  • 49
    • 84868159004 scopus 로고    scopus 로고
    • Slow dynamics and high variability in balanced cortical networks with clustered connections
    • Litwin-Kumar A, Doiron B. 2012. Slow dynamics and high variability in balanced cortical networks with clustered connections. Nature Neuroscience 15:1498–1505. doi: 10.1038/nn.3220.
    • (2012) Nature Neuroscience , vol.15 , pp. 1498-1505
    • Litwin-Kumar, A.1    Doiron, B.2
  • 50
    • 84861815486 scopus 로고    scopus 로고
    • Balance between excitation and inhibition controls the temporal organization of neuronal avalanches
    • Lombardi F, Herrmann HJ, Perrone-Capano C, Plenz D, de Arcangelis L. 2012. Balance between excitation and inhibition controls the temporal organization of neuronal avalanches. Physical Review Letters 108:228703. doi: 10.1103/PhysRevLett.108.228703.
    • (2012) Physical Review Letters , vol.108
    • Lombardi, F.1    Herrmann, H.J.2    Perrone-Capano, C.3    Plenz, D.4    De Arcangelis, L.5
  • 52
    • 77954231844 scopus 로고    scopus 로고
    • Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex
    • London M, Roth A, Beeren L, Hä usser M, Latham PE. 2010. Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex. Nature 466:123–127. doi: 10.1038/nature09086.
    • (2010) Nature , vol.466 , pp. 123-127
    • London, M.1    Roth, A.2    Beeren, L.3    Hä Usser, M.4    Latham, P.E.5
  • 53
    • 65549125349 scopus 로고    scopus 로고
    • Spontaneous events outline the realm of possible sensory responses in neocortical populations
    • Luczak A, Barthó P, Harris KD. 2009. Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron 62:413–425. doi: 10.1016/j.neuron.2009.03.014.
    • (2009) Neuron , vol.62 , pp. 413-425
    • Luczak, A.1    Barthó, P.2    Harris, K.D.3
  • 55
    • 0029030249 scopus 로고
    • Reliability of spike timing in neocortical neurons
    • Mainen ZF, Sejnowski TJ. 1995. Reliability of spike timing in neocortical neurons. Science 268:1503–1506. doi: 10.1126/science.7770778.
    • (1995) Science , vol.268 , pp. 1503-1506
    • Mainen, Z.F.1    Sejnowski, T.J.2
  • 57
    • 84894243868 scopus 로고    scopus 로고
    • Power laws and self-organized criticality in theory and nature
    • Markovic D, Gros C. 2014. Power laws and self-organized criticality in theory and nature. Professor in Human Resources 536:33.
    • (2014) Professor in Human Resources , vol.536
    • Markovic, D.1    Gros, C.2
  • 58
    • 84959451734 scopus 로고    scopus 로고
    • Relational dynamics in perception: Impacts on trial-to-trial variation
    • Marom S, Wallach A. 2011. Relational dynamics in perception: impacts on trial-to-trial variation. Frontiers in Computational Neuroscience 5:16. doi: 10.3389/fncom.2011.00016.
    • (2011) Frontiers in Computational Neuroscience , vol.5
    • Marom, S.1    Wallach, A.2
  • 60
    • 84924359083 scopus 로고    scopus 로고
    • Critical slowing down governs the transition to neuron spiking
    • Meisel C, Klaus A, Kuehn C, Plenz D. 2015. Critical slowing down governs the transition to neuron spiking. PLOS Computational Biology 11:e1004097. doi: 10.1371/journal.pcbi.1004097.
    • (2015) PLOS Computational Biology , vol.11
    • Meisel, C.1    Klaus, A.2    Kuehn, C.3    Plenz, D.4
  • 61
    • 84886697888 scopus 로고    scopus 로고
    • Fading signatures of critical brain dynamics during sustained wakefulness in humans
    • Meisel C, Olbrich E, Shriki O, Achermann P. 2013. Fading signatures of critical brain dynamics during sustained wakefulness in humans. The Journal of Neuroscience 33:17363–17372. doi: 10.1523/JNEUROSCI.1516-13.2013.
    • (2013) The Journal of Neuroscience , vol.33 , pp. 17363-17372
    • Meisel, C.1    Olbrich, E.2    Shriki, O.3    Achermann, P.4
  • 62
    • 77956588260 scopus 로고    scopus 로고
    • Number and laminar distribution of neurons in a thalamocortical projection column of rat vibrissal cortex
    • Meyer HS, Wimmer VC, Oberlaender M, de Kock CP, Sakmann B, Helmstaedter M. 2010. Number and laminar distribution of neurons in a thalamocortical projection column of rat vibrissal cortex. Cerebral Cortex 20: 2277–2286. doi: 10.1093/cercor/bhq067.
    • (2010) Cerebral Cortex , vol.20 , pp. 2277-2286
    • Meyer, H.S.1    Wimmer, V.C.2    Oberlaender, M.3    De Kock, C.P.4    Sakmann, B.5    Helmstaedter, M.6
  • 64
    • 77957551168 scopus 로고    scopus 로고
    • Self-organized criticality occurs in non-conservative neuronal networks during Up states
    • Millman D, Mihalas S, Kirkwood A, Niebur E. 2010. Self-organized criticality occurs in non-conservative neuronal networks during Up states. Nature Physics 6:801–805. doi: 10.1038/nphys1757.
    • (2010) Nature Physics , vol.6 , pp. 801-805
    • Millman, D.1    Mihalas, S.2    Kirkwood, A.3    Niebur, E.4
  • 65
    • 84885130654 scopus 로고    scopus 로고
    • Griffiths phases and the stretching of criticality in brain networks
    • Moretti P, Munõz MA. 2013. Griffiths phases and the stretching of criticality in brain networks. Nature Communications 4:2521. doi: 10.1038/ncomms3521.
    • (2013) Nature Communications , vol.4
    • Moretti, P.1    Munõz, M.A.2
  • 66
    • 3242706582 scopus 로고    scopus 로고
    • Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins
    • Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A. 2004. Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins. Proceedings of the National Academy of Sciences of USA 101:10554–10559. doi: 10.1073/pnas.0400417101.
    • (2004) Proceedings of the National Academy of Sciences of USA , vol.101 , pp. 10554-10559
    • Nagai, T.1    Yamada, S.2    Tominaga, T.3    Ichikawa, M.4    Miyawaki, A.5
  • 68
    • 77957004090 scopus 로고    scopus 로고
    • Neural activity in barrel cortex underlying vibrissa-based object localization in mice
    • O’Connor DH, Peron SP, Huber D, Svoboda K. 2010. Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron 67:1048–1061. doi: 10.1016/j.neuron.2010.08.026.
    • (2010) Neuron , vol.67 , pp. 1048-1061
    • O’Connor, D.H.1    Peron, S.P.2    Huber, D.3    Svoboda, K.4
  • 69
    • 84897033914 scopus 로고    scopus 로고
    • Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons
    • Ostojic S. 2014. Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons. Nature Neuroscience 17:594–600. doi: 10.1038/nn.3658.
    • (2014) Nature Neuroscience , vol.17 , pp. 594-600
    • Ostojic, S.1
  • 72
    • 43949083698 scopus 로고    scopus 로고
    • Self-organization and neuronal avalanches in networks of dissociated cortical neurons
    • Pasquale V, Massobrio P, Bologna LL, Chiappalone M, Martinoia S. 2008. Self-organization and neuronal avalanches in networks of dissociated cortical neurons. Neuroscience 153:1354–69. doi: 10.1016/j.neuroscience.2008.03.050.
    • (2008) Neuroscience , vol.153 , pp. 1354-1369
    • Pasquale, V.1    Massobrio, P.2    Bologna, L.L.3    Chiappalone, M.4    Martinoia, S.5
  • 74
    • 84860522933 scopus 로고    scopus 로고
    • Neuronal avalanches and coherence potentials
    • Plenz D. 2012. Neuronal avalanches and coherence potentials. The European Physical Journal Special Topics 205: 259–301. doi: 10.1140/epjst/e2012-01575-5.
    • (2012) The European Physical Journal Special Topics , vol.205 , pp. 259-301
    • Plenz, D.1
  • 75
    • 0027256226 scopus 로고
    • Current source density profiles of optical recording maps: A new approach to the analysis of spatio-temporal neural activity patterns
    • Plenz D, Aertsen A. 1993. Current source density profiles of optical recording maps: a new approach to the analysis of spatio-temporal neural activity patterns. The European Journal of Neuroscience 5:437–448. doi: 10.1111/j.1460-9568.1993.tb00510.x.
    • (1993) The European Journal of Neuroscience , vol.5 , pp. 437-448
    • Plenz, D.1    Aertsen, A.2
  • 77
    • 33847236188 scopus 로고    scopus 로고
    • The organizing principles of neuronal avalanches: Cell assemblies in the cortex?
    • Plenz D, Thiagarajan TC. 2007. The organizing principles of neuronal avalanches: cell assemblies in the cortex? Trends in Neurosciences 30:101–110. doi: 10.1016/j.tins.2007.01.005.
    • (2007) Trends in Neurosciences , vol.30 , pp. 101-110
    • Plenz, D.1    Thiagarajan, T.C.2
  • 78
    • 84863899325 scopus 로고    scopus 로고
    • Critical-state dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks
    • Poil SS, Hardstone R, Mansvelder HD, Linkenkaer-Hansen K. 2012. Critical-state dynamics of avalanches and oscillations jointly emerge from balanced excitation/inhibition in neuronal networks. The Journal of Neuroscience 32:9817–9823. doi: 10.1523/JNEUROSCI.5990-11.2012.
    • (2012) The Journal of Neuroscience , vol.32 , pp. 9817-9823
    • Poil, S.S.1    Hardstone, R.2    Mansvelder, H.D.3    Linkenkaer-Hansen, K.4
  • 79
    • 49649123252 scopus 로고    scopus 로고
    • Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice
    • Poulet JF, Petersen CC. 2008. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454:881–885. doi: 10.1038/nature07150.
    • (2008) Nature , vol.454 , pp. 881-885
    • Poulet, J.F.1    Petersen, C.C.2
  • 80
    • 67649119882 scopus 로고    scopus 로고
    • Subsampling effects in neuronal avalanche distributions recorded in vivo
    • Priesemann V, Munk MH, Wibral M. 2009. Subsampling effects in neuronal avalanche distributions recorded in vivo. BMC Neuroscience 10:40. doi: 10.1186/1471-2202-10-40.
    • (2009) BMC Neuroscience , vol.10
    • Priesemann, V.1    Munk, M.H.2    Wibral, M.3
  • 81
    • 84876007722 scopus 로고    scopus 로고
    • Neuronal avalanches differ from wakefulness to deep sleep–evidence from intracranial depth recordings in humans
    • Priesemann V, Valderrama M, Wibral M, Le Van Quyen M. 2013. Neuronal avalanches differ from wakefulness to deep sleep–evidence from intracranial depth recordings in humans. PLOS Computational Biology 9:e1002985. doi: 10.1371/journal.pcbi.1002985.
    • (2013) PLOS Computational Biology , vol.9
    • Priesemann, V.1    Valderrama, M.2    Wibral, M.3    Le Van Quyen, M.4
  • 83
    • 33847251669 scopus 로고    scopus 로고
    • Measures for information propagation in Boolean networks
    • Rämö P, Kauffman S, Kesselia J, Yli-Harja O. 2007. Measures for information propagation in Boolean networks. Physica D 227:100–104. doi: 10.1016/j.physd.2006.12.005.
    • (2007) Physica D , vol.227 , pp. 100-104
    • Rämö, P.1    Kauffman, S.2    Kesselia, J.3    Yli-Harja, O.4
  • 86
    • 84899714273 scopus 로고    scopus 로고
    • Undersampled critical branching processes on smallworld and random networks fail to reproduce the statistics of spike avalanches
    • Ribeiro TL, Ribeiro S, Belchior H, Caixeta F, Copelli M. 2014. Undersampled critical branching processes on smallworld and random networks fail to reproduce the statistics of spike avalanches. PLOS ONE 9:e94992. doi: 10.1371/journal.pone.0094992.
    • (2014) PLOS ONE , vol.9
    • Ribeiro, T.L.1    Ribeiro, S.2    Belchior, H.3    Caixeta, F.4    Copelli, M.5
  • 87
    • 79959856130 scopus 로고    scopus 로고
    • Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons
    • Rubinov M, Sporns O, Thivierge JP, Breakspear M. 2011. Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons. PLOS Computational Biology 7:e1002038. doi: 10.1371/journal.pcbi.1002038.
    • (2011) PLOS Computational Biology , vol.7
    • Rubinov, M.1    Sporns, O.2    Thivierge, J.P.3    Breakspear, M.4
  • 88
    • 34347210350 scopus 로고    scopus 로고
    • In vivo electroporation in the embryonic mouse central nervous system
    • Saito T. 2006. In vivo electroporation in the embryonic mouse central nervous system. Nature Protocols 1: 1552–1558. doi: 10.1038/nprot.2006.276.
    • (2006) Nature Protocols , vol.1 , pp. 1552-1558
    • Saito, T.1
  • 89
    • 0035584249 scopus 로고    scopus 로고
    • Efficient gene transfer into the embryonic mouse brain using in vivo electroporation
    • Saito T, Nakatsuji N. 2001. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Developmental Biology 240:237–246. doi: 10.1006/dbio.2001.0439.
    • (2001) Developmental Biology , vol.240 , pp. 237-246
    • Saito, T.1    Nakatsuji, N.2
  • 90
    • 0033799036 scopus 로고    scopus 로고
    • Cellular and network mechanisms of rhythmic recurrent activity in neocortex
    • Sanchez-Vives MV, McCormick DA. 2000. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience 3:1027–1034. doi: 10.1038/79848.
    • (2000) Nature Neuroscience , vol.3 , pp. 1027-1034
    • Sanchez-Vives, M.V.1    McCormick, D.A.2
  • 91
    • 34547100567 scopus 로고    scopus 로고
    • The functional microarchitecture of the mouse barrel cortex
    • Sato TR, Gray NW, Mainen ZF, Svoboda K. 2007. The functional microarchitecture of the mouse barrel cortex. PLOS Biology 5:e189. doi: 10.1371/journal.pbio.0050189.
    • (2007) PLOS Biology , vol.5
    • Sato, T.R.1    Gray, N.W.2    Mainen, Z.F.3    Svoboda, K.4
  • 94
    • 0032525177 scopus 로고    scopus 로고
    • The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding
    • Shadlen MN, Newsome WT. 1998. The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. The Journal of Neuroscience 18:3870–3896.
    • (1998) The Journal of Neuroscience , vol.18 , pp. 3870-3896
    • Shadlen, M.N.1    Newsome, W.T.2
  • 95
    • 84871566364 scopus 로고    scopus 로고
    • The functional benefits of criticality in the cortex
    • Shew WL, Plenz D. 2012. The functional benefits of criticality in the cortex. The Neuroscientist 19:88–100. doi: 10.1177/1073858412445487.
    • (2012) The Neuroscientist , vol.19 , pp. 88-100
    • Shew, W.L.1    Plenz, D.2
  • 96
    • 71849090030 scopus 로고    scopus 로고
    • Neuronal avalanches imply maximum dynamic range in cortical networks at criticality
    • Shew WL, Yang H, Petermann T, Roy R, Plenz D. 2009. Neuronal avalanches imply maximum dynamic range in cortical networks at criticality. The Journal of Neuroscience 29:15595–15600. doi: 10.1523/JNEUROSCI.3864-09.2009.
    • (2009) The Journal of Neuroscience , vol.29 , pp. 15595-15600
    • Shew, W.L.1    Yang, H.2    Petermann, T.3    Roy, R.4    Plenz, D.5
  • 97
    • 78650868298 scopus 로고    scopus 로고
    • Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches
    • Shew WL, Yang H, Yu S, Roy R, Plenz D. 2011. Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches. The Journal of Neuroscience 5:55–63. doi: 10.1523/JNEUROSCI.4637-10.2011.
    • (2011) The Journal of Neuroscience , vol.5 , pp. 55-63
    • Shew, W.L.1    Yang, H.2    Yu, S.3    Roy, R.4    Plenz, D.5
  • 99
    • 0027498486 scopus 로고
    • The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs
    • Softky WR, Koch C. 1993. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. The Journal of Neuroscience 13:334–350.
    • (1993) The Journal of Neuroscience , vol.13 , pp. 334-350
    • Softky, W.R.1    Koch, C.2
  • 101
    • 84922221071 scopus 로고    scopus 로고
    • Synaptic plasticity enables adaptive self-tuning critical networks
    • Stepp N, Plenz D, Srinivasa N. 2014. Synaptic plasticity enables adaptive self-tuning critical networks. PLOS Computational Biology 11:e1004043. doi: 10.1371/journal.pcbi.1004043.
    • (2014) PLOS Computational Biology , vol.11
    • Stepp, N.1    Plenz, D.2    Srinivasa, N.3
  • 102
    • 0032106255 scopus 로고    scopus 로고
    • Input synchrony and the irregular firing of cortical neurons
    • Stevens CF, Zador AM. 1998. Input synchrony and the irregular firing of cortical neurons. Nature Neuroscience 1: 210–217. doi: 10.1038/659.
    • (1998) Nature Neuroscience , vol.1 , pp. 210-217
    • Stevens, C.F.1    Zador, A.M.2
  • 103
    • 33748177916 scopus 로고    scopus 로고
    • Inverted-U profile of dopamine-NMDA-mediated spontaneous avalanche recurrence in superficial layers of rat prefrontal cortex
    • Stewart CV, Plenz D. 2006. Inverted-U profile of dopamine-NMDA-mediated spontaneous avalanche recurrence in superficial layers of rat prefrontal cortex. The Journal of Neuroscience 26:8148–8159. doi: 10.1523/JNEUROSCI.0723-06.2006.
    • (2006) The Journal of Neuroscience , vol.26 , pp. 8148-8159
    • Stewart, C.V.1    Plenz, D.2
  • 104
    • 41049110604 scopus 로고    scopus 로고
    • Homeostasis of neuronal avalanches during postnatal cortex development in vitro
    • Stewart CV, Plenz D. 2007. Homeostasis of neuronal avalanches during postnatal cortex development in vitro. Journal of Neuroscience Methods 169:405–416. doi: 10.1016/j.jneumeth.2007.10.021.
    • (2007) Journal of Neuroscience Methods , vol.169 , pp. 405-416
    • Stewart, C.V.1    Plenz, D.2
  • 105
    • 68949147577 scopus 로고    scopus 로고
    • Generating coherent patterns of activity from chaotic neural networks
    • Sussillo D, Abbott LF. 2009. Generating coherent patterns of activity from chaotic neural networks. Neuron 63: 544–557. doi: 10.1016/j.neuron.2009.07.018.
    • (2009) Neuron , vol.63 , pp. 544-557
    • Sussillo, D.1    Abbott, L.F.2
  • 106
    • 84866296479 scopus 로고    scopus 로고
    • Criticality in large-scale brain FMRI dynamics unveiled by a novel point process analysis
    • Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR. 2012. Criticality in large-scale brain FMRI dynamics unveiled by a novel point process analysis. Frontiers in Physiology 3:15. doi: 10.3389/fphys.2012.00015.
    • (2012) Frontiers in Physiology , vol.3
    • Tagliazucchi, E.1    Balenzuela, P.2    Fraiman, D.3    Chialvo, D.R.4
  • 107
    • 65549141264 scopus 로고    scopus 로고
    • Recurrent infomax generates cell assemblies, neuronal avalanches, and simple cell-like selectivity
    • Tanaka T, Kaneko T, Aoyagi T. 2009. Recurrent infomax generates cell assemblies, neuronal avalanches, and simple cell-like selectivity. Neural Computation 21:1038–1067. doi: 10.1162/neco.2008.03-08-727.
    • (2009) Neural Computation , vol.21 , pp. 1038-1067
    • Tanaka, T.1    Kaneko, T.2    Aoyagi, T.3
  • 110
    • 0032032921 scopus 로고    scopus 로고
    • Interaction between duration of activity and time course of recovery from slow inactivation in mammalian brain Na+ channels
    • Toib A, Lyakhov V, Marom S. 1998. Interaction between duration of activity and time course of recovery from slow inactivation in mammalian brain Na+ channels. The Journal of Neuroscience 18:1893–1903.
    • (1998) The Journal of Neuroscience , vol.18 , pp. 1893-1903
    • Toib, A.1    Lyakhov, V.2    Marom, S.3
  • 111
    • 84925129840 scopus 로고    scopus 로고
    • Marginally subcritical dynamics explain enhanced stimulus discriminability under attention
    • Tomen N, Rotermund D, Ernst U. 2014. Marginally subcritical dynamics explain enhanced stimulus discriminability under attention. Frontiers in Systems Neuroscience 8:151. doi: 10.3389/fnsys.2014.00151.
    • (2014) Frontiers in Systems Neuroscience , vol.8
    • Tomen, N.1    Rotermund, D.2    Ernst, U.3
  • 112
    • 77949359925 scopus 로고    scopus 로고
    • Can power-law scaling and neuronal avalanches arise from stochastic dynamics?
    • Touboul J, Destexhe A. 2010. Can power-law scaling and neuronal avalanches arise from stochastic dynamics? PLOS ONE 5:e8982. doi: 10.1371/journal.pone.0008982.
    • (2010) PLOS ONE , vol.5
    • Touboul, J.1    Destexhe, A.2
  • 113
    • 0029835892 scopus 로고    scopus 로고
    • Chaos in neuronal networks with balanced excitatory and inhibitory activity
    • Van Vreeswijk C, Sompolinsky H. 1996. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274:1724–1726. doi: 10.1126/science.274.5293.1724.
    • (1996) Science , vol.274 , pp. 1724-1726
    • Van Vreeswijk, C.1    Sompolinsky, H.2
  • 114
  • 117
    • 84865730225 scopus 로고    scopus 로고
    • Sustained activity in hierarchical modular neural networks: Self-organized criticality and oscillations
    • Wang SJ, Hilgetag CC, Zhou C. 2011. Sustained activity in hierarchical modular neural networks: self-organized criticality and oscillations. Frontiers in Computational Neuroscience 5:30. doi: 10.3389/fncom.2011.00030.
    • (2011) Frontiers in Computational Neuroscience , vol.5
    • Wang, S.J.1    Hilgetag, C.C.2    Zhou, C.3
  • 120
    • 84862908621 scopus 로고    scopus 로고
    • Maximal variability of phase synchrony in cortical networks with neuronal avalanches
    • Yang H, Shew WL, Roy R, Plenz D. 2012. Maximal variability of phase synchrony in cortical networks with neuronal avalanches. The Journal of Neuroscience 32:1061–1072. doi: 10.1523/JNEUROSCI.2771-11.2012.
    • (2012) The Journal of Neuroscience , vol.32 , pp. 1061-1072
    • Yang, H.1    Shew, W.L.2    Roy, R.3    Plenz, D.4
  • 121
    • 84902824865 scopus 로고    scopus 로고
    • Scale-invariant neuronal avalanche dynamics and the cut-off in size distributions
    • Yu S, Klaus A, Yang H, Plenz D. 2014. Scale-invariant neuronal avalanche dynamics and the cut-off in size distributions. PLOS ONE 9:e99761. doi: 10.1371/journal.pone.0099761.
    • (2014) PLOS ONE , vol.9
    • Yu, S.1    Klaus, A.2    Yang, H.3    Plenz, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.