메뉴 건너뛰기




Volumn 2015-January, Issue January, 2014, Pages 390-399

Fast and Exact Monitoring of Co-Evolving Data Streams

Author keywords

Co evolving data streams; Hidden Markov models

Indexed keywords

DATA MINING; HIDDEN MARKOV MODELS; TRELLIS CODES;

EID: 84936934872     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2014.62     Document Type: Conference Paper
Times cited : (18)

References (37)
  • 1
    • 77950884255 scopus 로고    scopus 로고
    • Spatio-temporal models for estimating click-through rate
    • Madrid, Spain April
    • D. Agarwal, B.-C. Chen, and P. Elango. Spatio-temporal models for estimating click-through rate. In WWW Conference, pages 21-30, Madrid, Spain, April 2009.
    • (2009) WWW Conference , pp. 21-30
    • Agarwal, D.1    Chen, B.-C.2    Elango, P.3
  • 3
    • 85135872226 scopus 로고    scopus 로고
    • On the marriage of lp-norms and edit distance
    • L. Chen and R. T. Ng. On the marriage of lp-norms and edit distance. In VLDB, pages 792-803, 2004.
    • (2004) VLDB , pp. 792-803
    • Chen, L.1    Ng, R.T.2
  • 4
    • 0028447023 scopus 로고
    • Fast subsequence matching in time-series databases
    • C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-series databases. In SIGMOD, pages 419-429, 1994.
    • (1994) SIGMOD , pp. 419-429
    • Faloutsos, C.1    Ranganathan, M.2    Manolopoulos, Y.3
  • 5
    • 65449116939 scopus 로고    scopus 로고
    • Spiral: Efficient and exact model identification for hidden markov models
    • Y. Fujiwara, Y. Sakurai, and M. Yamamuro. Spiral: efficient and exact model identification for hidden markov models. In KDD, pages 247-255, 2008.
    • (2008) KDD , pp. 247-255
    • Fujiwara, Y.1    Sakurai, Y.2    Yamamuro, M.3
  • 6
    • 0005308437 scopus 로고    scopus 로고
    • Surfing wavelets on streams: One-pass summaries for approximate aggregate queries
    • A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing wavelets on streams: One-pass summaries for approximate aggregate queries. In VLDB, pages 79-88, 2001.
    • (2001) VLDB , pp. 79-88
    • Gilbert, A.C.1    Kotidis, Y.2    Muthukrishnan, S.3    Strauss, M.4
  • 7
    • 85162005069 scopus 로고    scopus 로고
    • Online learning for latent dirichlet allocation
    • M. D. Hoffman, D. M. Blei, and F. R. Bach. Online learning for latent dirichlet allocation. In NIPS, pages 856-864, 2010.
    • (2010) NIPS , pp. 856-864
    • Hoffman, M.D.1    Blei, D.M.2    Bach, F.R.3
  • 8
    • 3142770653 scopus 로고    scopus 로고
    • Adaptive stream resource management using kalman filters
    • A. Jain, E. Y. Chang, and Y.-F. Wang. Adaptive stream resource management using kalman filters. In SIGMOD, pages 11-22, 2004.
    • (2004) SIGMOD , pp. 11-22
    • Jain, A.1    Chang, E.Y.2    Wang, Y.-F.3
  • 9
    • 84944324113 scopus 로고    scopus 로고
    • An efficient index structure for string databases
    • September
    • T. Ka hveci and A. K. Singh. An efficient index structure for string databases. In Proceedings of VLDB, pages 351-360, September 2001.
    • (2001) Proceedings of VLDB , pp. 351-360
    • Ka Hveci, T.1    Singh, A.K.2
  • 10
    • 33845594450 scopus 로고    scopus 로고
    • An online algorithm for segmenting time series
    • E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani. An online algorithm for segmenting time series. In ICDM, pages 289-296, 2001.
    • (2001) ICDM , pp. 289-296
    • Keogh, E.J.1    Chu, S.2    Hart, D.3    Pazzani, M.J.4
  • 14
    • 70350677089 scopus 로고    scopus 로고
    • Dynammo: Mining and summarization of coevolving sequences with missing values
    • L. Li, J. McCann, N. Pollard, and C.Faloutsos. Dynammo: Mining and summarization of coevolving sequences with missing values. In KDD, 2009.
    • (2009) KDD
    • Li, L.1    McCann, J.2    Pollard, N.3    Faloutsos, C.4
  • 15
    • 80053442169 scopus 로고    scopus 로고
    • Time series clustering: Complex is simpler! in
    • L. Li and B. A. Prakash. Time series clustering: Complex is simpler! In ICML, 2011.
    • (2011) ICML
    • Li, L.1    Prakash, B.A.2
  • 16
    • 12244277019 scopus 로고    scopus 로고
    • Visually mining and monitoring massive time series
    • J. Lin, E. J. Keogh, S. Lonardi, J. P. Lankford, and D. M. Nystrom. Visually mining and monitoring massive time series. In KDD, pages 460-469, 2004.
    • (2004) KDD , pp. 460-469
    • Lin, J.1    Keogh, E.J.2    Lonardi, S.3    Lankford, J.P.4    Nystrom, D.M.5
  • 17
    • 77950974380 scopus 로고    scopus 로고
    • Early online identification of attention gathering items in social media
    • M. Mathiouda kis, N. Koudas, and P. Marbach. Early online identification of attention gathering items in social media. In WSDM, pages 301-310, 2010.
    • (2010) WSDM , pp. 301-310
    • Mathiouda Kis, M.1    Koudas, N.2    Marbach, P.3
  • 19
    • 84904362626 scopus 로고    scopus 로고
    • Autoplait: Automatic mining of co-evolving time sequences
    • Y. Matsubara, Y. Sakurai, and C. Faloutsos. Autoplait: Automatic mining of co-evolving time sequences. In SIGMOD, 2014.
    • (2014) SIGMOD
    • Matsubara, Y.1    Sakurai, Y.2    Faloutsos, C.3
  • 20
    • 84866042606 scopus 로고    scopus 로고
    • Fast mining and forecasting of complex time-stamped events
    • Y. Matsubara, Y. Sakurai, C. Faloutsos, T. Iwata, and M. Yoshikawa. Fast mining and forecasting of complex time-stamped events. In KDD, pages 271-279, 2012.
    • (2012) KDD , pp. 271-279
    • Matsubara, Y.1    Sakurai, Y.2    Faloutsos, C.3    Iwata, T.4    Yoshikawa, M.5
  • 21
    • 84866023367 scopus 로고    scopus 로고
    • Rise and fall patterns of information diffusion: Model and implications
    • Y. Matsubara, Y. Sakurai, B. A. Prakash, L. Li, and C. Faloutsos. Rise and fall patterns of information diffusion: model and implications. In KDD, pages 6-14, 2012.
    • (2012) KDD , pp. 6-14
    • Matsubara, Y.1    Sakurai, Y.2    Prakash, B.A.3    Li, L.4    Faloutsos, C.5
  • 22
    • 77951179163 scopus 로고    scopus 로고
    • Scalable algorithms for distribution search
    • Y. Matsubara, Y. Sakurai, and M. Yoshikawa. Scalable algorithms for distribution search. In ICDM, pages 347-356, 2009.
    • (2009) ICDM , pp. 347-356
    • Matsubara, Y.1    Sakurai, Y.2    Yoshikawa, M.3
  • 23
    • 77956199047 scopus 로고    scopus 로고
    • Online discovery and maintenance of time series motifs
    • A. Mueen,E. J. Keogh. Online discovery and maintenance of time series motifs In KDD, 1089-1098, 2010.
    • (2010) KDD , pp. 1089-1098
    • Mueen, A.1    Keogh, E.J.2
  • 24
    • 33745631543 scopus 로고    scopus 로고
    • Streaming p attern discovery in multiple time-series
    • Trondheim, Norway August-September
    • S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming p attern discovery in multiple time-series. In Proceedings of VLDB, pages 697-708, Trondheim, Norway, August-September 2005.
    • (2005) Proceedings of VLDB , pp. 697-708
    • Papadimitriou, S.1    Sun, J.2    Faloutsos, C.3
  • 25
    • 34250753732 scopus 로고    scopus 로고
    • Optimal multi-scale patterns in time series streams
    • S. Papadimitriou and P. S. Yu. Optimal multi-scale patterns in time series streams. In SIGMOD Conference, pages 647-658, 2006.
    • (2006) SIGMOD Conference , pp. 647-658
    • Papadimitriou, S.1    Yu, P.S.2
  • 29
    • 34548722676 scopus 로고    scopus 로고
    • Stream monitoring under the time warping distance
    • Istanbul, Turkey April
    • Y. Sakurai, C. Faloutsos, and M. Yamamuro. Stream monitoring under the time warping distance. In ICDE, pages 1046-1055, Istanbul, Turkey, April 2007.
    • (2007) ICDE , pp. 1046-1055
    • Sakurai, Y.1    Faloutsos, C.2    Yamamuro, M.3
  • 30
    • 29844444109 scopus 로고    scopus 로고
    • Braid: Stream mining through group lag correlations
    • Y. Sakurai, S. Papadimitriou, and C. Faloutsos. Braid: Stream mining through group lag correlations. In SIGMOD, pages 599-610, 2005.
    • (2005) SIGMOD , pp. 599-610
    • Sakurai, Y.1    Papadimitriou, S.2    Faloutsos, C.3
  • 31
    • 29344449529 scopus 로고    scopus 로고
    • Spotting subsequences matching an hmm using the average observation probability criteria with application to keyword spotting
    • M.-C. Silagh i. Spotting subsequences matching an hmm using the average observation probability criteria with application to keyword spotting. In AAAI, pages 1118-1123, 2005.
    • (2005) AAAI , pp. 1118-1123
    • Silaghi, M.-C.1
  • 32
    • 3142713119 scopus 로고    scopus 로고
    • Prediction and indexing of moving objects with unknown motion patterns
    • Y. Tao, C. Faloutsos, D. Papadias, and B. Liu. Prediction and indexing of moving objects with unknown motion patterns. In SIGMOD, pages 611-622, 2004.
    • (2004) SIGMOD , pp. 611-622
    • Tao, Y.1    Faloutsos, C.2    Papadias, D.3    Liu, B.4
  • 33
    • 15544383958 scopus 로고    scopus 로고
    • Elastic translation invariant matching of trajectories
    • Feb
    • M. Vlachos, G. Kollios, and D. Gunopulos. Elastic translation invariant matching of trajectories. Mach. Learn., 58(2-3):301-334, Feb. 2005.
    • (2005) Mach. Learn , vol.58 , Issue.2-3 , pp. 301-334
    • Vlachos, M.1    Kollios, G.2    Gunopulos, D.3
  • 34
    • 77954723720 scopus 로고    scopus 로고
    • Optimal distance bound s on time-series data
    • M. Vlachos, S. S. Kozat, and P. S. Yu. Optimal distance bound s on time-series data. In SDM, pages 109-120, 2009.
    • (2009) SDM , pp. 109-120
    • Vlachos, M.1    Kozat, S.S.2    Yu, P.S.3
  • 35
    • 79959970432 scopus 로고    scopus 로고
    • Finding semantics in time series
    • P. Wang, H. Wang, and W. Wang. Finding semantics in time series. In SIGMOD Conference, pages 385-396, 2011.
    • (2011) SIGMOD Conference , pp. 385-396
    • Wang, P.1    Wang, H.2    Wang, W.3
  • 36
    • 0024916535 scopus 로고
    • Application of hidden markov models for recognition of a limited set of words in unconstrained speech
    • ] J. G. Wilpon, C. H. Lee, and L. R. Rabiner. Application of hidden Markov models for recognition of a limited set of words in unconstrained speech. In ICASSP, pages 254-257 vol.1, 1989.
    • (1989) ICASSP , vol.1 , pp. 254-257
    • Wilpon, J.G.1    Lee, C.H.2    Rabiner, L.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.