메뉴 건너뛰기




Volumn 82, Issue , 2015, Pages 192-198

Support vector machine in crash prediction at the level of traffic analysis zones: Assessing the spatial proximity effects

Author keywords

CAR model; Correlation based feature selector; Spatial weight features; Support vector machine

Indexed keywords

CRASHWORTHINESS; FORECASTING; MODEL AUTOMOBILES; SENSITIVITY ANALYSIS; STATISTICAL TESTS;

EID: 84935925848     PISSN: 00014575     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aap.2015.05.018     Document Type: Article
Times cited : (143)

References (32)
  • 1
    • 80052281438 scopus 로고    scopus 로고
    • Integrating trip and roadway characteristics in managing safety at traffic analysis zones
    • M. Abdel-Aty, C. Siddiqui, H. Huang, and X. Wang Integrating trip and roadway characteristics in managing safety at traffic analysis zones Transp. Res. Rec. 2213 2011 20 28
    • (2011) Transp. Res. Rec. , vol.2213 , pp. 20-28
    • Abdel-Aty, M.1    Siddiqui, C.2    Huang, H.3    Wang, X.4
  • 4
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • J. Besag Spatial interaction and the statistical analysis of lattice systems J. R. Stat. Soc. 36 1974 192 236
    • (1974) J. R. Stat. Soc. , vol.36 , pp. 192-236
    • Besag, J.1
  • 6
    • 0345548661 scopus 로고    scopus 로고
    • Comparison of support vector machine and artificial neural network systems for drug/nondrug classification
    • E. Byvatov, U. Fechner, J. Sadowski, and G. Schneider Comparison of support vector machine and artificial neural network systems for drug/nondrug classification J. Chem. Inf. Comput. Sci. 43 2003 1882 1889
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1882-1889
    • Byvatov, E.1    Fechner, U.2    Sadowski, J.3    Schneider, G.4
  • 8
    • 84935828293 scopus 로고    scopus 로고
    • Evaluating spatial proximity structures in crash prediction models at the level of traffic analysis zones
    • N. Dong, H. Huang, P. Xu, Z. Ding, and D. Wang Evaluating spatial proximity structures in crash prediction models at the level of traffic analysis zones Transp. Res. Rec. 2432 2014 46 52
    • (2014) Transp. Res. Rec. , vol.2432 , pp. 46-52
    • Dong, N.1    Huang, H.2    Xu, P.3    Ding, Z.4    Wang, D.5
  • 9
    • 33644906732 scopus 로고    scopus 로고
    • A visual method for determining variable importance in an artificial neural network model: An empirical benchmark study
    • K.E. Fish, and J.G. Blodgett A visual method for determining variable importance in an artificial neural network model: an empirical benchmark study J. Target. Meas. Anal. Market. 11 2003 244 254
    • (2003) J. Target. Meas. Anal. Market. , vol.11 , pp. 244-254
    • Fish, K.E.1    Blodgett, J.G.2
  • 11
    • 77955984221 scopus 로고    scopus 로고
    • Multilevel data and Bayesian analysis in traffic safety
    • H. Huang, and M. Abdel-Aty Multilevel data and Bayesian analysis in traffic safety Accid. Anal. Prev. 42 6 2010 1556 1565
    • (2010) Accid. Anal. Prev. , vol.42 , Issue.6 , pp. 1556-1565
    • Huang, H.1    Abdel-Aty, M.2
  • 12
    • 78651305583 scopus 로고    scopus 로고
    • County-level crash risk analysis in Florida: Bayesian spatial modeling
    • H. Huang, M. Abdel-Aty, and A.L. Darwiche County-level crash risk analysis in Florida: Bayesian spatial modeling Transp. Res. Rec. 2148 2010 27 37
    • (2010) Transp. Res. Rec. , vol.2148 , pp. 27-37
    • Huang, H.1    Abdel-Aty, M.2    Darwiche, A.L.3
  • 14
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based feature selection and parameters optimization for support vector machines
    • C.L. Huang, and C.J. Wang A GA-based feature selection and parameters optimization for support vector machines Expert Syst. Appl. 31 2006 231 240
    • (2006) Expert Syst. Appl. , vol.31 , pp. 231-240
    • Huang, C.L.1    Wang, C.J.2
  • 15
    • 79951775181 scopus 로고    scopus 로고
    • Statistical methods versus neural networks in transportation research: Differences, similarities and some insights
    • M.G. Karlaftis, and E.I. Vlahogianni Statistical methods versus neural networks in transportation research: differences, similarities and some insights Transp. Res. Part C: Emerg. Technol. 19 2011 387 399
    • (2011) Transp. Res. Part C: Emerg. Technol. , vol.19 , pp. 387-399
    • Karlaftis, M.G.1    Vlahogianni, E.I.2
  • 16
    • 46149126623 scopus 로고    scopus 로고
    • Predicting motor vehicle crashes using support vector machine models
    • X. Li, D. Lord, Y. Zhang, and Y. Xie Predicting motor vehicle crashes using support vector machine models Accid. Anal. Prev. 40 2008 1611 1618
    • (2008) Accid. Anal. Prev. , vol.40 , pp. 1611-1618
    • Li, X.1    Lord, D.2    Zhang, Y.3    Xie, Y.4
  • 17
    • 84856080826 scopus 로고    scopus 로고
    • Using support vector machine models for crash injury severity analysis
    • Z. Li, P. Liu, W. Wang, and C. Xu Using support vector machine models for crash injury severity analysis Accid. Anal. Prev. 45 2012 478 486
    • (2012) Accid. Anal. Prev. , vol.45 , pp. 478-486
    • Li, Z.1    Liu, P.2    Wang, W.3    Xu, C.4
  • 18
    • 4344699939 scopus 로고    scopus 로고
    • A spatial disaggregate analysis of road casualties in England
    • R.B. Noland, and M.A. Quddus A spatial disaggregate analysis of road casualties in England Accid. Anal. Prev. 36 2004 973 984
    • (2004) Accid. Anal. Prev. , vol.36 , pp. 973-984
    • Noland, R.B.1    Quddus, M.A.2
  • 19
    • 46149122279 scopus 로고    scopus 로고
    • Modeling area-wide count outcomes with spatial correlation and heterogeneity: An analysis of London crash data
    • M.A. Quddus Modeling area-wide count outcomes with spatial correlation and heterogeneity: an analysis of London crash data Accid. Anal. Prev. 40 2008 1486 1497
    • (2008) Accid. Anal. Prev. , vol.40 , pp. 1486-1497
    • Quddus, M.A.1
  • 22
    • 84856105981 scopus 로고    scopus 로고
    • Macroscopic spatial analysis of pedestrian and bicycle crashes
    • C. Siddiqui, M. Abdel-Aty, and K. Choi Macroscopic spatial analysis of pedestrian and bicycle crashes Accid. Anal. Prev. 45 2012 382 391
    • (2012) Accid. Anal. Prev. , vol.45 , pp. 382-391
    • Siddiqui, C.1    Abdel-Aty, M.2    Choi, K.3
  • 26
    • 84897972964 scopus 로고    scopus 로고
    • Sensitivity analysis in the context of regional safety modeling: Identifying and assessing the MAUP effects
    • P. Xu, H. Huang, N. Dong, and M. Abdel-Aty Sensitivity analysis in the context of regional safety modeling: identifying and assessing the MAUP effects Accid. Anal. Prev. 70 2014 110 120
    • (2014) Accid. Anal. Prev. , vol.70 , pp. 110-120
    • Xu, P.1    Huang, H.2    Dong, N.3    Abdel-Aty, M.4
  • 27
    • 84911901180 scopus 로고    scopus 로고
    • Modeling crash spatial heterogeneity: Random parameter versus geographically weighting
    • P. Xu, and H. Huang Modeling crash spatial heterogeneity: random parameter versus geographically weighting Accid. Anal. Prev. 75 2015 16 25
    • (2015) Accid. Anal. Prev. , vol.75 , pp. 16-25
    • Xu, P.1    Huang, H.2
  • 28
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • L. Yu, and H. Liu Efficient feature selection via analysis of relevance and redundancy J. Mach. Learn. Res. 5 2003 1205 1224
    • (2003) J. Mach. Learn. Res. , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 29
    • 84872121433 scopus 로고    scopus 로고
    • Utilizing support vector machine in real-time crash risk evaluation
    • R. Yu, and M. Abdel-Aty Utilizing support vector machine in real-time crash risk evaluation Accid. Anal. Prev. 51 2013 252 259
    • (2013) Accid. Anal. Prev. , vol.51 , pp. 252-259
    • Yu, R.1    Abdel-Aty, M.2
  • 30
    • 40449104106 scopus 로고    scopus 로고
    • Forecasting of short-term freeway volume with v-support vector machines
    • Y. Zhang, and Y. Xie Forecasting of short-term freeway volume with v-support vector machines Transp. Res. Rec. 2024 2008 92 99
    • (2008) Transp. Res. Rec. , vol.2024 , pp. 92-99
    • Zhang, Y.1    Xie, Y.2
  • 31
    • 84896540539 scopus 로고    scopus 로고
    • Bayesian spatial joint modeling of traffic crashes on an urban road network
    • Q. Zeng, and H. Huang Bayesian spatial joint modeling of traffic crashes on an urban road network Accid. Anal. Prev. 67 2014 105 112
    • (2014) Accid. Anal. Prev. , vol.67 , pp. 105-112
    • Zeng, Q.1    Huang, H.2
  • 32
    • 84907842827 scopus 로고    scopus 로고
    • A stable and optimized neural network model for crash injury severity prediction
    • Q. Zeng, and H. Huang A stable and optimized neural network model for crash injury severity prediction Accid. Anal. Prev. 73 2014 351 358
    • (2014) Accid. Anal. Prev. , vol.73 , pp. 351-358
    • Zeng, Q.1    Huang, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.