-
1
-
-
84907851602
-
A new learning algorithm for a Fully Connected Fuzzy Inference System (F-CONFIS)
-
C. L. Philip Chen, J. Wang, C. H. Wang, and L. Chen, "A new learning algorithm for a Fully Connected Fuzzy Inference System (F-CONFIS)," IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 10, pp. 1741-1757, 2014.
-
(2014)
IEEE Transactions on Neural Networks and Learning Systems
, vol.25
, Issue.10
, pp. 1741-1757
-
-
Philip Chen, C.L.1
Wang, J.2
Wang, C.H.3
Chen, L.4
-
2
-
-
84881450982
-
Simultaneous-fault diagnosis of gas turbine generator systems using a pairwise-coupled probabilistic classifier
-
Article ID 827128
-
Z. Yang, P. K. Wong, C. M. Vong, J. Zhong, and J. Y. Liang, "Simultaneous-fault diagnosis of gas turbine generator systems using a pairwise-coupled probabilistic classifier," Mathematical Problems in Engineering, vol. 2013, Article ID 827128, 13 pages, 2013.
-
(2013)
Mathematical Problems in Engineering
, vol.2013
, pp. 13
-
-
Yang, Z.1
Wong, P.K.2
Vong, C.M.3
Zhong, J.4
Liang, J.Y.5
-
3
-
-
33745903481
-
Extreme learning machine: Theory and applications
-
G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: theory and applications," Neurocomputing, vol. 70, no. 1-3, pp. 489-501, 2006.
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
4
-
-
84859007933
-
Extreme learning machine for regression and multiclass classification
-
G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, "Extreme learning machine for regression and multiclass classification," IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 42, no. 2, pp. 513-529, 2012.
-
(2012)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
, vol.42
, Issue.2
, pp. 513-529
-
-
Huang, G.-B.1
Zhou, H.2
Ding, X.3
Zhang, R.4
-
5
-
-
9244257332
-
Magnified gradient function with deterministic weight modification in adaptive learning
-
S. C. Ng, C. C. Cheung, and S. H. Leung, "Magnified gradient function with deterministic weight modification in adaptive learning," IEEE Transactions on Neural Networks, vol. 15, no. 6, pp. 1411-1423, 2004.
-
(2004)
IEEE Transactions on Neural Networks
, vol.15
, Issue.6
, pp. 1411-1423
-
-
Ng, S.C.1
Cheung, C.C.2
Leung, S.H.3
-
6
-
-
34249753618
-
Support-vector networks
-
C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, vol. 20, no. 3, pp. 273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
7
-
-
85008039450
-
Online sequential fuzzy extreme learningmachine for function approximation and classification problems
-
H. J. Rong, G. B. Huang, N. Sundararajan, and P. Saratchandran, "Online sequential fuzzy extreme learningmachine for function approximation and classification problems," IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 39, no. 4, pp. 1067-1072, 2009.
-
(2009)
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
, vol.39
, Issue.4
, pp. 1067-1072
-
-
Rong, H.J.1
Huang, G.B.2
Sundararajan, N.3
Saratchandran, P.4
-
8
-
-
84883408018
-
Voting base online sequential extreme learning machine for multi-class classification
-
IEEE
-
J. Cao, Z. Lin, and G. B. Huang, "Voting base online sequential extreme learning machine for multi-class classification," in Proceedings of the IEEE International Symposiumon Circuits and Systems (ISCAS '13), pp. 2327-2330, IEEE, 2013.
-
(2013)
Proceedings of the IEEE International Symposiumon Circuits and Systems (ISCAS '13)
, pp. 2327-2330
-
-
Cao, J.1
Lin, Z.2
Huang, G.B.3
-
9
-
-
80755133532
-
Voting based extreme learning machine
-
J. Cao, Z. Lin, G. B. Huang, and N. Liu, "Voting based extreme learning machine," Information Sciences, vol. 185, no. 1, pp. 66-77, 2012.
-
(2012)
Information Sciences
, vol.185
, Issue.1
, pp. 66-77
-
-
Cao, J.1
Lin, Z.2
Huang, G.B.3
Liu, N.4
-
10
-
-
34047174077
-
A fast and accurate online sequential learning algorithm for feedforward networks
-
N. Y. Liang, G. B. Huang, P. Saratchandran, and N. Sundararajan, "A fast and accurate online sequential learning algorithm for feedforward networks," IEEE Transactions on Neural Networks, vol. 17, no. 6, pp. 1411-1423, 2006.
-
(2006)
IEEE Transactions on Neural Networks
, vol.17
, Issue.6
, pp. 1411-1423
-
-
Liang, N.Y.1
Huang, G.B.2
Saratchandran, P.3
Sundararajan, N.4
-
11
-
-
84897026988
-
Sparse Bayesian extreme learningmachine formulti-classification
-
J. Luo, C. M. Vong, and P. K. Wong, "Sparse Bayesian extreme learningmachine formulti-classification," IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 4, pp. 836-843, 2014.
-
(2014)
IEEE Transactions on Neural Networks and Learning Systems
, vol.25
, Issue.4
, pp. 836-843
-
-
Luo, J.1
Vong, C.M.2
Wong, P.K.3
-
12
-
-
33749252873
-
-
MIT Press, Cambridge, UK
-
O. Chapelle, B. Scholkopf, and A. Zien, Semi-Supervised Learning, vol. 2, MIT Press, Cambridge, UK, 2006.
-
(2006)
Semi-Supervised Learning
, vol.2
-
-
Chapelle, O.1
Scholkopf, B.2
Zien, A.3
-
13
-
-
77954299719
-
Ensemble of online sequential extreme learningmachine
-
Y. Lan, Y. C. Soh, and G. B. Huang, "Ensemble of online sequential extreme learningmachine," Neurocomputing, vol. 72, no. 13, pp. 3391-3395, 2009.
-
(2009)
Neurocomputing
, vol.72
, Issue.13
, pp. 3391-3395
-
-
Lan, Y.1
Soh, Y.C.2
Huang, G.B.3
-
14
-
-
77954304408
-
Ensemble based extreme learning machine
-
N. Liu and H. Wang, "Ensemble based extreme learning machine," IEEE Signal Processing Letters, vol. 17, no. 8, pp. 754-757, 2010.
-
(2010)
IEEE Signal Processing Letters
, vol.17
, Issue.8
, pp. 754-757
-
-
Liu, N.1
Wang, H.2
-
15
-
-
84893739853
-
Genetic ensemble of extreme learningmachine
-
X. Xue, M. Yao, Z. Wu, and J. Yang, "Genetic ensemble of extreme learningmachine,"Neurocomputing, vol. 129, no. 10, pp. 175-184, 2014.
-
(2014)
Neurocomputing
, vol.129
, Issue.10
, pp. 175-184
-
-
Xue, X.1
Yao, M.2
Wu, Z.3
Yang, J.4
-
16
-
-
84893679086
-
Parallelized extreme learning machine ensemble based on min-max modular network
-
X. L. Wang, Y. Y. Chen, H. Zhao, and B. L. Lu, "Parallelized extreme learning machine ensemble based on min-max modular network," Neurocomputing, vol. 128, pp. 31-41, 2014.
-
(2014)
Neurocomputing
, vol.128
, pp. 31-41
-
-
Wang, X.L.1
Chen, Y.Y.2
Zhao, H.3
Lu, B.L.4
-
17
-
-
0018465664
-
A composite classifier system design: Concepts andmethodology
-
B. V. Dasarathy and B. V. Sheela, "A composite classifier system design: concepts andmethodology," Proceedings of the IEEE, vol. 67, no. 5, pp. 708-713, 1979.
-
(1979)
Proceedings of the IEEE
, vol.67
, Issue.5
, pp. 708-713
-
-
Dasarathy, B.V.1
Sheela, B.V.2
-
18
-
-
0025507176
-
Neuralnetworkensembles
-
L. K. HansenandP. Salamon, "Neuralnetworkensembles," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 10, pp. 993-1001, 1990.
-
(1990)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.12
, Issue.10
, pp. 993-1001
-
-
Hansenand, L.K.1
Salamon, P.2
-
19
-
-
0030211964
-
Bagging predictors
-
L. Breiman, "Bagging predictors,"Machine Learning, vol. 24, no. 2, pp. 123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
20
-
-
0025448521
-
The strength of weak learnability
-
R. E. Schapire, "The strength of weak learnability," Machine Learning, vol. 5, no. 2, pp. 197-227, 1990.
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
21
-
-
80555147158
-
-
MIT Press, Cambridge, Mass, USA
-
R. E. Schapire and Y. Freund, Boosting: Foundations and Algorithms/Robert E. Schapire, Yoav Freund, MIT Press, Cambridge, Mass, USA, 2012.
-
(2012)
Boosting: Foundations and Algorithms/Robert E. Schapire, Yoav Freund
-
-
Schapire, R.E.1
Freund, Y.2
-
22
-
-
0035478854
-
Random forests
-
L. Breiman, "Random forests," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
23
-
-
0001940458
-
Adaptive mixtures of local experts
-
R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, "Adaptive mixtures of local experts," Neural Computation, vol. 3, no. 1, pp. 79-87, 1991.
-
(1991)
Neural Computation
, vol.3
, Issue.1
, pp. 79-87
-
-
Jacobs, R.A.1
Jordan, M.I.2
Nowlan, S.J.3
Hinton, G.E.4
-
24
-
-
0033280008
-
Multiclass learning, boosting, and error-correcting codes
-
July
-
V. Guruswami and A. Sahai, "Multiclass learning, boosting, and error-correcting codes," in Proceedings of the 12th Annual Conference on Computational Learning Theory (COLT 99), pp. 145-155, July 1999.
-
(1999)
Proceedings of the 12th Annual Conference on Computational Learning Theory (COLT 99)
, pp. 145-155
-
-
Guruswami, V.1
Sahai, A.2
-
25
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
R. E. Schapire and Y. Singer, "Improved boosting algorithms using confidence-rated predictions," Machine Learning, vol. 37, no. 3, pp. 297-336, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
28
-
-
0033556775
-
Boosting regression estimators
-
R. Avnimelech and N. Intrator, "Boosting regression estimators," Neural Computation, vol. 11, no. 2, pp. 499-520, 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.2
, pp. 499-520
-
-
Avnimelech, R.1
Intrator, N.2
-
29
-
-
10944236146
-
AdaBoost. RT: A boosting algorithm for regression problems
-
IEEE
-
D. P. Solomatine and D. L. Shrestha, "AdaBoost. RT: a boosting algorithm for regression problems," in Proceedings of the IEEE International Joint Conference on Neural Networks, vol. 2, pp. 1163-1168, IEEE, 2004.
-
(2004)
Proceedings of the IEEE International Joint Conference on Neural Networks
, vol.2
, pp. 1163-1168
-
-
Solomatine, D.P.1
Shrestha, D.L.2
-
30
-
-
33745780111
-
Experiments with AdaBoost. RT, an improved boosting scheme for regression
-
D. L. Shrestha and D. P. Solomatine, "Experiments with AdaBoost. RT, an improved boosting scheme for regression," Neural Computation, vol. 18, no. 7, pp. 1678-1710, 2006.
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1678-1710
-
-
Shrestha, D.L.1
Solomatine, D.P.2
-
31
-
-
73849104985
-
An ensemble ELM based on modified AdaBoost. RT algorithm for predicting the temperature of molten steel in ladle furnace
-
H.-X. Tian and Z.-Z. Mao, "An ensemble ELM based on modified AdaBoost. RT algorithm for predicting the temperature of molten steel in ladle furnace," IEEE Transactions on Automation Science and Engineering, vol. 7, no. 1, pp. 73-80, 2010.
-
(2010)
IEEE Transactions on Automation Science and Engineering
, vol.7
, Issue.1
, pp. 73-80
-
-
Tian, H.-X.1
Mao, Z.-Z.2
-
32
-
-
84912119287
-
Fast online learning algorithm for landmark recognition based on BoW framework
-
Hangzhou, China, June
-
J. W. Cao, T. Chen, and J. Fan, "Fast online learning algorithm for landmark recognition based on BoW framework," in Proceedings of the 9th IEEE Conference on Industrial Electronics and Applications, Hangzhou, China, June 2014.
-
(2014)
Proceedings of the 9th IEEE Conference on Industrial Electronics and Applications
-
-
Cao, J.W.1
Chen, T.2
Fan, J.3
-
33
-
-
77649238806
-
Composite function wavelet neural networks with extreme learning machine
-
J. Cao, Z. Lin, and G.-B. Huang, "Composite function wavelet neural networks with extreme learning machine," Neurocomputing, vol. 73, no. 7-9, pp. 1405-1416, 2010.
-
(2010)
Neurocomputing
, vol.73
, Issue.7-9
, pp. 1405-1416
-
-
Cao, J.1
Lin, Z.2
Huang, G.-B.3
-
34
-
-
25544438757
-
-
Trinity College Dublin, Dublin, Ireland
-
R. Feely, Predicting stockmarket volatility using neural networks, B. A. (Mod. ) Ph. D. thesis], Trinity College Dublin, Dublin, Ireland, 2000.
-
(2000)
Predicting Stockmarket Volatility Using Neural Networks, B. A. (Mod. ) Ph. D. Thesis]
-
-
Feely, R.1
-
35
-
-
84886567160
-
-
University of California, School of Information and Computer Science, Irvine, Calif, USA
-
K. Bache and M. Lichman, UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, Calif, USA, 2014, http://archive.ics.uci.edu/ml.
-
(2014)
UCI Machine Learning Repository
-
-
Bache, K.1
Lichman, M.2
-
36
-
-
84899013173
-
Support vector regression machines
-
H. Drucker, C. J. Burges, L. Kaufman, A. Smola, and V. Vapnik, "Support vector regression machines," Advances in Neural Information Processing Systems, vol. 9, pp. 155-161, 1997.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 155-161
-
-
Drucker, H.1
Burges, C.J.2
Kaufman, L.3
Smola, A.4
Vapnik, V.5
-
37
-
-
0032638628
-
Least squares support vector machine classifiers
-
J. A. Suykens and J. Vandewalle, "Least squares support vector machine classifiers," Neural Processing Letters, vol. 9, no. 3, pp. 293-300, 1999.
-
(1999)
Neural Processing Letters
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.1
Vandewalle, J.2
|