-
1
-
-
0033556775
-
Boosting regression estimators
-
Avnimelech, R., & Intrator, N. (1999). Boosting regression estimators. Neural Computation, 11 (2), 499-520.
-
(1999)
Neural Computation
, vol.11
, Issue.2
, pp. 499-520
-
-
Avnimelech, R.1
Intrator, N.2
-
2
-
-
0003408496
-
-
Irvine, CA: Univ. of California, Dep. of Information and Computer Science
-
Blake, C.L., & Merz, C.J. (1998). UCI Repository of machine learning databases. Irvine, CA: Univ. of California, Dep. of Information and Computer Science. Available http://www.ics.uci.edu/~mlearn/MLRepository.html.
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Blake, C.L.1
Merz, C.J.2
-
3
-
-
0030196364
-
Stacked regresser
-
Breiman, L. (1996a). Stacked regresser. Machine Learning, 24(1), 49-64.
-
(1996)
Machine Learning
, vol.24
, Issue.1
, pp. 49-64
-
-
Breiman, L.1
-
4
-
-
0003619255
-
Bias, variance, and arcing classifiers
-
Statistics Dep., Univ. of California, Berkeley, CA
-
Breiman, L. (1996b). Bias, variance, and arcing classifiers (Technical Report 460). Statistics Dep., Univ. of California, Berkeley, CA.
-
(1996)
Technical Report
, vol.460
-
-
Breiman, L.1
-
5
-
-
0000275022
-
Prediction games and arcing algorithms
-
Breiman, L. (1997). Prediction Games and Arcing Algorithms. Neural Computation, 11 (7), 1493-1518.
-
(1997)
Neural Computation
, vol.11
, Issue.7
, pp. 1493-1518
-
-
Breiman, L.1
-
6
-
-
0000201141
-
Improving regressor using boosting
-
Douglas H. Fisher, Jr (Eds.), Morgan Kaufmann
-
Drucker, H. (1997). Improving Regressor using Boosting. Douglas H. Fisher, Jr (Eds.), Proc. of the 14th Int. Conf. on Machine Learning (pp 107-115) Morgan Kaufmann.
-
(1997)
Proc. of the 14th Int. Conf. on Machine Learning
, pp. 107-115
-
-
Drucker, H.1
-
7
-
-
0002364061
-
Boosting using neural networks
-
A. J. C. Sharkey (ed.), London: Springer-Verlag
-
Drucker, H. (1999). Boosting Using Neural Networks. In A. J. C. Sharkey (ed.), In Combining Artificial Neural Nets (pp. 51-77). London: Springer-Verlag.
-
(1999)
Combining Artificial Neural Nets
, pp. 51-77
-
-
Drucker, H.1
-
10
-
-
0031211090
-
A decision-theoretic generalisation of on-line learning and an application of boosting
-
Freund, Y., & Schapire, R. (1997). A decision-theoretic generalisation of on-line learning and an application of boosting. J. of Computer and System Sciences, 55 (1), 119-139.
-
(1997)
J. of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.2
-
11
-
-
0034164230
-
Additive logistic regression: A statictical view of boosting
-
Friedman, J.,Hastie, T., & Tibshirani, R. (2000). Additive Logistic Regression: A Statictical View of Boosting. The Annals of Statistics, 28 (2), 337-374.
-
(2000)
The Annals of Statistics
, vol.28
, Issue.2
, pp. 337-374
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
12
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
Friedman, J. (2001). Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics, 29 (5), 1189-1232.
-
(2001)
The Annals of Statistics
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.1
-
13
-
-
10944226498
-
-
Neural Machine: http://www.data-machine.com.
-
Neural Machine
-
-
-
15
-
-
0000551189
-
Popular ensemble methods: An empirical study
-
Opitz, D., & Maclin, R. (1999). Popular Ensemble Methods: An Empirical Study. J. of Artificial Intelligence Research, 11(1999), 169-198.
-
(1999)
J. of Artificial Intelligence Research
, vol.11
, Issue.1999
, pp. 169-198
-
-
Opitz, D.1
Maclin, R.2
-
16
-
-
0001495905
-
Learning with continuous classes
-
World Secientific, Singapore
-
Quinlan, J.R. (1992). Learning with continuous classes. Proc. of the 5th Autralian Joint Conf. on AI (pp. 343-348). World Secientific, Singapore.
-
(1992)
Proc. of the 5th Autralian Joint Conf. on AI
, pp. 343-348
-
-
Quinlan, J.R.1
-
19
-
-
0002311782
-
Boosting methodology for regression problems
-
Fort Lauderdale, FL
-
Ridgeway, G., Madigan, D., & Richardson, T. (1999). Boosting methodology for regression problems. Proc. of the 7th Int. Workshop on Artificial Intelligence and Statistics (pp. 152-161). Fort Lauderdale, FL.
-
(1999)
Proc. of the 7th Int. Workshop on Artificial Intelligence and Statistics
, pp. 152-161
-
-
Ridgeway, G.1
Madigan, D.2
Richardson, T.3
-
20
-
-
0025448521
-
The strength of weak learnability
-
Schapire, R. (1990). The strength of weak learnability. Machine Learning, 5 (2), 197-227.
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.1
-
21
-
-
0037565156
-
Model tree as an alternative to neural network in rainfall-runoff modelling
-
Solomatine, D.P., & Dulal, K.N. (2003). Model tree as an alternative to neural network in rainfall-runoff modelling. Hydrological Science J., 48 (3), 399-411.
-
(2003)
Hydrological Science J.
, vol.48
, Issue.3
, pp. 399-411
-
-
Solomatine, D.P.1
Dulal, K.N.2
-
22
-
-
85037997203
-
Committee Machines
-
Yu Hen Hu and Jenq-Neng Hwang (Eds.), CRC Press
-
Tresp, V. (2001). Committee Machines. Yu Hen Hu and Jenq-Neng Hwang (Eds.), Handbook for neural network signal processing. CRC Press.
-
(2001)
Handbook for Neural Network Signal Processing
-
-
Tresp, V.1
-
23
-
-
84876764406
-
-
Weka Software: http://www.cs.waikato.ac.nz/ml/weka/
-
Weka Software
-
-
-
25
-
-
84898985725
-
A gradient-based boosting algorithm for regression problems
-
Leen, T.K., Dietterich, T.G., & Tresp, V. (Eds.), MIT press
-
Zemel, R., & Pitassi, T. (2001). A gradient-based boosting algorithm for regression problems. Leen, T.K., Dietterich, T.G., & Tresp, V. (Eds.), Advances in Neural Information Processing Systems 13. MIT press.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
-
-
Zemel, R.1
Pitassi, T.2
|