메뉴 건너뛰기




Volumn 2, Issue , 2004, Pages 1163-1168

AdaBoost.RT: A boosting algorithm for regression problems

Author keywords

[No Author keywords available]

Indexed keywords

ERROR ANALYSIS; ITERATIVE METHODS; MATHEMATICAL MODELS; MATRIX ALGEBRA; NEURAL NETWORKS; PROBABILITY DISTRIBUTIONS; PROBLEM SOLVING; REGRESSION ANALYSIS; TREES (MATHEMATICS);

EID: 10944236146     PISSN: 10987576     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (263)

References (25)
  • 1
    • 0033556775 scopus 로고    scopus 로고
    • Boosting regression estimators
    • Avnimelech, R., & Intrator, N. (1999). Boosting regression estimators. Neural Computation, 11 (2), 499-520.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 499-520
    • Avnimelech, R.1    Intrator, N.2
  • 2
    • 0003408496 scopus 로고    scopus 로고
    • Irvine, CA: Univ. of California, Dep. of Information and Computer Science
    • Blake, C.L., & Merz, C.J. (1998). UCI Repository of machine learning databases. Irvine, CA: Univ. of California, Dep. of Information and Computer Science. Available http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2
  • 3
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regresser
    • Breiman, L. (1996a). Stacked regresser. Machine Learning, 24(1), 49-64.
    • (1996) Machine Learning , vol.24 , Issue.1 , pp. 49-64
    • Breiman, L.1
  • 4
    • 0003619255 scopus 로고    scopus 로고
    • Bias, variance, and arcing classifiers
    • Statistics Dep., Univ. of California, Berkeley, CA
    • Breiman, L. (1996b). Bias, variance, and arcing classifiers (Technical Report 460). Statistics Dep., Univ. of California, Berkeley, CA.
    • (1996) Technical Report , vol.460
    • Breiman, L.1
  • 5
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • Breiman, L. (1997). Prediction Games and Arcing Algorithms. Neural Computation, 11 (7), 1493-1518.
    • (1997) Neural Computation , vol.11 , Issue.7 , pp. 1493-1518
    • Breiman, L.1
  • 6
    • 0000201141 scopus 로고    scopus 로고
    • Improving regressor using boosting
    • Douglas H. Fisher, Jr (Eds.), Morgan Kaufmann
    • Drucker, H. (1997). Improving Regressor using Boosting. Douglas H. Fisher, Jr (Eds.), Proc. of the 14th Int. Conf. on Machine Learning (pp 107-115) Morgan Kaufmann.
    • (1997) Proc. of the 14th Int. Conf. on Machine Learning , pp. 107-115
    • Drucker, H.1
  • 7
    • 0002364061 scopus 로고    scopus 로고
    • Boosting using neural networks
    • A. J. C. Sharkey (ed.), London: Springer-Verlag
    • Drucker, H. (1999). Boosting Using Neural Networks. In A. J. C. Sharkey (ed.), In Combining Artificial Neural Nets (pp. 51-77). London: Springer-Verlag.
    • (1999) Combining Artificial Neural Nets , pp. 51-77
    • Drucker, H.1
  • 10
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalisation of on-line learning and an application of boosting
    • Freund, Y., & Schapire, R. (1997). A decision-theoretic generalisation of on-line learning and an application of boosting. J. of Computer and System Sciences, 55 (1), 119-139.
    • (1997) J. of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 11
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statictical view of boosting
    • Friedman, J.,Hastie, T., & Tibshirani, R. (2000). Additive Logistic Regression: A Statictical View of Boosting. The Annals of Statistics, 28 (2), 337-374.
    • (2000) The Annals of Statistics , vol.28 , Issue.2 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 12
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J. (2001). Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics, 29 (5), 1189-1232.
    • (2001) The Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.1
  • 13
  • 15
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • Opitz, D., & Maclin, R. (1999). Popular Ensemble Methods: An Empirical Study. J. of Artificial Intelligence Research, 11(1999), 169-198.
    • (1999) J. of Artificial Intelligence Research , vol.11 , Issue.1999 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 16
    • 0001495905 scopus 로고
    • Learning with continuous classes
    • World Secientific, Singapore
    • Quinlan, J.R. (1992). Learning with continuous classes. Proc. of the 5th Autralian Joint Conf. on AI (pp. 343-348). World Secientific, Singapore.
    • (1992) Proc. of the 5th Autralian Joint Conf. on AI , pp. 343-348
    • Quinlan, J.R.1
  • 20
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R. (1990). The strength of weak learnability. Machine Learning, 5 (2), 197-227.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 21
    • 0037565156 scopus 로고    scopus 로고
    • Model tree as an alternative to neural network in rainfall-runoff modelling
    • Solomatine, D.P., & Dulal, K.N. (2003). Model tree as an alternative to neural network in rainfall-runoff modelling. Hydrological Science J., 48 (3), 399-411.
    • (2003) Hydrological Science J. , vol.48 , Issue.3 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 22
  • 23
    • 84876764406 scopus 로고    scopus 로고
    • Weka Software: http://www.cs.waikato.ac.nz/ml/weka/
    • Weka Software
  • 25
    • 84898985725 scopus 로고    scopus 로고
    • A gradient-based boosting algorithm for regression problems
    • Leen, T.K., Dietterich, T.G., & Tresp, V. (Eds.), MIT press
    • Zemel, R., & Pitassi, T. (2001). A gradient-based boosting algorithm for regression problems. Leen, T.K., Dietterich, T.G., & Tresp, V. (Eds.), Advances in Neural Information Processing Systems 13. MIT press.
    • (2001) Advances in Neural Information Processing Systems , vol.13
    • Zemel, R.1    Pitassi, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.