메뉴 건너뛰기




Volumn 25, Issue 10, 2014, Pages 1741-1757

A new learning algorithm for a fully connected neuro-fuzzy inference system

Author keywords

Fully connected neuro fuzzy inference systems (F CONFIS); fuzzy logic; fuzzy neural networks; gradient descent; neural networks (NNs); neuro fuzzy system; optimal learning

Indexed keywords

FUZZY NEURAL NETWORKS;

EID: 84907851602     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2014.2306915     Document Type: Article
Times cited : (46)

References (38)
  • 1
    • 84898678160 scopus 로고    scopus 로고
    • Developing a local least-squares support vector machines-based neuro-fuzzy model for nonlinear and chaotic time series prediction
    • Feb.
    • A. Miranian and M. Abdollahzade, "Developing a local least-squares support vector machines-based neuro-fuzzy model for nonlinear and chaotic time series prediction," IEEE Trans. Neural Netw., vol. 24, no. 2, pp. 207-218, Feb. 2013.
    • (2013) IEEE Trans. Neural Netw. , vol.24 , Issue.2 , pp. 207-218
    • Miranian, A.1    Abdollahzade, M.2
  • 2
    • 84863088595 scopus 로고    scopus 로고
    • ARPOP: An appetitive rewardbased pseudo-outer-product neural fuzzy inference system inspired from the operant conditioning of feeding behavior in Aplysia
    • Feb.
    • E. Y. Cheu, C. Quek, and S. K. Ng, "ARPOP: An appetitive rewardbased pseudo-outer-product neural fuzzy inference system inspired from the operant conditioning of feeding behavior in Aplysia," IEEE Trans. Neural Netw., vol. 23, no. 2, pp. 317-328, Feb. 2012.
    • (2012) IEEE Trans. Neural Netw. , vol.23 , Issue.2 , pp. 317-328
    • Cheu, E.Y.1    Quek, C.2    Ng, S.K.3
  • 3
    • 0029308071 scopus 로고
    • Fuzzy B-spline membership function and its applications in fuzzy-neural control
    • May.
    • C. H. Wang, W. Y. Wang, T. T. Lee, and P.-S. Tseng, "Fuzzy B-spline membership function and its applications in fuzzy-neural control," IEEE Trans. Syst., Man, Cybern., vol. 25, no. 5, pp. 841-851, May 1995.
    • (1995) IEEE Trans. Syst., Man, Cybern. , vol.25 , Issue.5 , pp. 841-851
    • Wang, C.H.1    Wang, W.Y.2    Lee, T.T.3    Tseng, P.-S.4
  • 4
    • 0027666001 scopus 로고
    • An integration of neural network and rule-based systems for design and planning of mechanical assemblies
    • Sep./Oct.
    • C. L. P. Chen and Y. H. Pao, "An integration of neural network and rule-based systems for design and planning of mechanical assemblies," IEEE Trans. Syst., Man, Cybern., vol. 23, no. 5, pp. 1359-1371, Sep./Oct. 1993.
    • (1993) IEEE Trans. Syst., Man, Cybern. , vol.23 , Issue.5 , pp. 1359-1371
    • Chen, C.L.P.1    Pao, Y.H.2
  • 5
    • 15944368174 scopus 로고    scopus 로고
    • Adaptive intelligent control of aircraft systems with a hybrid approach combining neural networks, fuzzy logic and fractal theory
    • Dec.
    • P. Melin and O. Castillo, "Adaptive intelligent control of aircraft systems with a hybrid approach combining neural networks, fuzzy logic and fractal theory," Appl. Soft Comput., vol. 3, no. 4, pp. 353-362, Dec. 2003.
    • (2003) Appl. Soft Comput. , vol.3 , Issue.4 , pp. 353-362
    • Melin, P.1    Castillo, O.2
  • 6
    • 84880920607 scopus 로고    scopus 로고
    • Knowledgeleverage-based TSK fuzzy system modeling
    • Aug.
    • Z. Deng, Y. Jiang, K. S. Choi, F. L. Chung, and S. Wang, "Knowledgeleverage-based TSK fuzzy system modeling," IEEE Trans. Neural Netw., vol. 24, no. 8, pp. 1200-1212, Aug. 2013.
    • (2013) IEEE Trans. Neural Netw. , vol.24 , Issue.8 , pp. 1200-1212
    • Deng, Z.1    Jiang, Y.2    Choi, K.S.3    Chung, F.L.4    Wang, S.5
  • 7
    • 83655184649 scopus 로고    scopus 로고
    • Data-based system modeling using a type-2 fuzzy neural network with a hybrid learning algorithm
    • Dec.
    • C. Y. Yeh, W. H. R. Jeng, and S. J. Lee, "Data-Based system modeling using a type-2 fuzzy neural network with a hybrid learning algorithm," IEEE Trans. Neural Netw., vol. 22, no. 12, pp. 2296-2309, Dec. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.12 , pp. 2296-2309
    • Yeh, C.Y.1    Jeng, W.H.R.2    Lee, S.J.3
  • 8
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • May
    • J. S. R. Jang, "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665-685, May 1993.
    • (1993) IEEE Trans. Syst., Man, Cybern. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 9
    • 0033732353 scopus 로고    scopus 로고
    • The equivalence between fuzzy logic systems and feedforward neural networks
    • Mar.
    • H. X. Li and C. L. P. Chen, "The equivalence between fuzzy logic systems and feedforward neural networks," IEEE Trans. Neural Netw., vol. 11, no. 2, pp. 356-365, Mar. 2000.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.2 , pp. 356-365
    • Li, H.X.1    Chen, C.L.P.2
  • 10
    • 83855163521 scopus 로고    scopus 로고
    • Nonlinear system identification by gustafson-kessel fuzzy clustering and supervised local model network learning for the drug absorption spectra process
    • Dec.
    • L. Teslíc, B. Hartmann, O. Nelles, and I. Škrjanc, "Nonlinear system identification by gustafson-kessel fuzzy clustering and supervised local model network learning for the drug absorption spectra process," IEEE Trans. Neural Netw., vol. 22, no. 12, pp. 1941-1951, Dec. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.12 , pp. 1941-1951
    • Teslíc, L.1    Hartmann, B.2    Nelles, O.3    Škrjanc, I.4
  • 11
    • 0026955101 scopus 로고
    • Can back-propagation error surface not have local minima
    • Nov.
    • X. H. Yu, "Can back-propagation error surface not have local minima," IEEE Trans. Neural Netw., vol. 3, no. 6, pp. 1019-1021, Nov. 1992.
    • (1992) IEEE Trans. Neural Netw. , vol.3 , Issue.6 , pp. 1019-1021
    • Yu, X.H.1
  • 12
    • 0029304808 scopus 로고
    • Dynamic learning rate optimization of the backpropagation algorithm
    • May
    • X. H. Yu, G.-A. Chen, and S. Xin, "Dynamic learning rate optimization of the backpropagation algorithm," IEEE Trans. Neural Netw., vol. 6, no. 3, pp. 669-677, May 1995.
    • (1995) IEEE Trans. Neural Netw. , vol.6 , Issue.3 , pp. 669-677
    • Yu, X.H.1    Chen, G.-A.2    Xin, S.3
  • 13
    • 13244268569 scopus 로고    scopus 로고
    • Intelligent control of a stepping motor drive using an adaptive neuro-fuzzy inference system
    • Feb.
    • P. Melin and O. Castillo, "Intelligent control of a stepping motor drive using an adaptive neuro-fuzzy inference system," Inf. Sci., vol. 170, nos. 2-4, pp. 133-151, Feb. 2005.
    • (2005) Inf. Sci. , vol.170 , Issue.2-4 , pp. 133-151
    • Melin, P.1    Castillo, O.2
  • 14
    • 4544367996 scopus 로고    scopus 로고
    • Intelligent control of a stepping motor drive using a hybrid neuro-fuzzy ANFIS approach
    • Nov.
    • L. Aguilar, P. Melin, and O. Castillo, "Intelligent control of a stepping motor drive using a hybrid neuro-fuzzy ANFIS approach," Appl. Soft Comput., vol. 3, no. 3, pp. 209-219, Nov. 2003.
    • (2003) Appl. Soft Comput. , vol.3 , Issue.3 , pp. 209-219
    • Aguilar, L.1    Melin, P.2    Castillo, O.3
  • 15
    • 0028428006 scopus 로고
    • A robust back propagation learning algorithm for function approximation
    • May
    • D. S. Chen and R. C. Jain, "A robust back propagation learning algorithm for function approximation," IEEE Trans. Neural Netw., vol. 5, no. 3, pp. 467-479, May 1994.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.3 , pp. 467-479
    • Chen, D.S.1    Jain, R.C.2
  • 16
    • 9244227975 scopus 로고    scopus 로고
    • New dynamical optimal learning for linear multilayer FNN
    • Nov.
    • K. C. Tan and H. J. Tang, "New dynamical optimal learning for linear multilayer FNN," IEEE Trans. Neural Netw., vol. 15, no. 6, pp. 1562-1570, Nov. 2004.
    • (2004) IEEE Trans. Neural Netw. , vol.15 , Issue.6 , pp. 1562-1570
    • Tan, K.C.1    Tang, H.J.2
  • 17
    • 84907827113 scopus 로고    scopus 로고
    • The bounded capacity of fuzzy neural networks (FNNs) via a new fully connected neural fuzzy iference system (F-CONFIS) with Its applications
    • J. Wang, C. H. Wang, and C. L. Philip Chen, "The bounded capacity of fuzzy neural networks (FNNs) via a new fully connected neural fuzzy iference system (F-CONFIS) with Its applications," IEEE Trans. Fuzzy Syst., doi 10.1109/TFUZZ.2013.2292972, 2014.
    • (2014) IEEE Trans. Fuzzy Syst.
    • Wang, J.1    Wang, C.H.2    Philip Chen, C.L.3
  • 18
    • 0035359807 scopus 로고    scopus 로고
    • Dynamic optimal learning rates of a certain class of fuzzy neural networks and its applications with genetic algorithm
    • Jun.
    • C. H. Wang, H. L. Liu, and C. T. Lin, "Dynamic optimal learning rates of a certain class of fuzzy neural networks and its applications with genetic algorithm," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 31, no. 3, pp. 467-475, Jun. 2001.
    • (2001) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.31 , Issue.3 , pp. 467-475
    • Wang, C.H.1    Liu, H.L.2    Lin, C.T.3
  • 19
    • 0031028741 scopus 로고    scopus 로고
    • Effective back-propagation with variable stepsize
    • G. D. Magoulas, M. N. Vrahatis, and G. S. Androulakis, "Effective back-propagation with variable stepsize," Neural Netw., vol. 10, no. 1, pp. 69-82, 1997.
    • (1997) Neural Netw. , vol.10 , Issue.1 , pp. 69-82
    • Magoulas, G.D.1    Vrahatis, M.N.2    Androulakis, G.S.3
  • 20
    • 76349113332 scopus 로고    scopus 로고
    • A modified gradient-based neurofuzzy learning algorithm and its convergence
    • May
    • W. Wu, L. Li, J. Yang, and Y. Liu, "A modified gradient-based neurofuzzy learning algorithm and its convergence," Inf. Sci., vol. 180, no. 9, pp. 1630-1642, May 2010.
    • (2010) Inf. Sci. , vol.180 , Issue.9 , pp. 1630-1642
    • Wu, W.1    Li, L.2    Yang, J.3    Liu, Y.4
  • 21
    • 84907854433 scopus 로고    scopus 로고
    • Dynamical optimal learning for FNN and its applications
    • Jun.
    • C. H. Wang, C. S. Cheng, and T. T. Lee, "Dynamical optimal learning for FNN and its applications," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 3, pp. 467-475, Jun. 2004.
    • (2004) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.34 , Issue.3 , pp. 467-475
    • Wang, C.H.1    Cheng, C.S.2    Lee, T.T.3
  • 22
    • 11144270518 scopus 로고    scopus 로고
    • Dynamical optimal learning for FNN and its applications
    • Jul.
    • H. J. Tang, K. C. Tan, and T. H. Lee, "Dynamical optimal learning for FNN and its applications," in Proc. IEEE Int. Conf. Fuzzy Syst., vol. 1. Jul. 2004, pp. 443-447.
    • (2004) Proc. IEEE Int. Conf. Fuzzy Syst. , vol.1 , pp. 443-447
    • Tang, H.J.1    Tan, K.C.2    Lee, T.H.3
  • 24
    • 46849120765 scopus 로고    scopus 로고
    • On the equivalence of a table lookup (TL)technique and fuzzy neural network (FNN) with block pulse membership functions (BPMFs) and its application to water injection control of an automobile
    • Jul.
    • C. H. Wang and J. S. Wen, "On the equivalence of a table lookup (TL)technique and fuzzy neural network (FNN) with block pulse membership functions (BPMFs) and its application to water injection control of an automobile," IEEE Trans Syst., Man, Cybern. C, Appl. Rev., vol. 38, no. 4, pp. 574-580, Jul. 2008.
    • (2008) IEEE Trans Syst., Man, Cybern. C, Appl. Rev. , vol.38 , Issue.4 , pp. 574-580
    • Wang, C.H.1    Wen, J.S.2
  • 25
    • 0034271492 scopus 로고    scopus 로고
    • The annealing robust backpropagation (ARBP) learning algorithm
    • Sep.
    • C. C. Chuang, S. F. Su, and C. C. Hsiao, "The annealing robust backpropagation (ARBP) learning algorithm," IEEE Trans. Neural Netw., vol. 11, no. 5, pp. 1067-1076, Sep. 2000.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.5 , pp. 1067-1076
    • Chuang, C.C.1    Su, S.F.2    Hsiao, C.C.3
  • 27
    • 0036456215 scopus 로고    scopus 로고
    • Backpropagation based training algorithm for takagi-sugeno type MIMO neuro-fuzzy network to forecast electrical load time series
    • May
    • A. K. Palit and G. Doeding, "Backpropagation based training algorithm for takagi-sugeno type MIMO neuro-fuzzy network to forecast electrical load time series," in Proc. IEEE Int. Conf. Fuzzy Syst., vol. 1, May 2002, pp. 86-91.
    • (2002) Proc. IEEE Int. Conf. Fuzzy Syst. , vol.1 , pp. 86-91
    • Palit, A.K.1    Doeding, G.2
  • 28
    • 0034875840 scopus 로고    scopus 로고
    • Training neural networks: Backpropagation vs. Genetic algorithms
    • Jul.
    • M. N. H. Siddique and M. O. Tokhi, "Training neural networks: Backpropagation vs. genetic algorithms," in Proc. Int. Joint Conf. Neural Netw., vol. 4. Jul. 2001. pp. 2673-2678.
    • (2001) Proc. Int. Joint Conf. Neural Netw. , vol.4 , pp. 2673-2678
    • Siddique, M.N.H.1    Tokhi, M.O.2
  • 30
    • 77956313399 scopus 로고    scopus 로고
    • Equivalences between neuralautoregressive time series models and fuzzy systems
    • Sep.
    • J. L. Aznarte and J. M. Benítez, "Equivalences between neuralautoregressive time series models and fuzzy systems," IEEE Trans. Neural Netw., vol. 21, no. 9, pp. 1434-1444, Sep. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.9 , pp. 1434-1444
    • Aznarte, J.L.1    Benítez, J.M.2
  • 32
    • 84966275544 scopus 로고
    • Minimization of functions having Lipschitz continuous partial derivatives
    • L. Armijo, "Minimization of functions having Lipschitz continuous partial derivatives," Pacific J. Math., vol. 16, no. 1, pp. 1-4, 1966.
    • (1966) Pacific J. Math. , vol.16 , Issue.1 , pp. 1-4
    • Armijo, L.1
  • 33
    • 21844522450 scopus 로고
    • Efficient line search algorithm for unconstrained optimization
    • F. A. Potra and Y. Shi, "Efficient line search algorithm for unconstrained optimization," J. Optim. Theory Appl., vol. 85, no. 3, pp. 677-704, 1995.
    • (1995) J. Optim. Theory Appl. , vol.85 , Issue.3 , pp. 677-704
    • Potra, F.A.1    Shi, Y.2
  • 34
    • 84873385216 scopus 로고    scopus 로고
    • A new gradient descent approach for local learning of fuzzy neural models
    • Feb.
    • W. Q. Zhao, K. Li, and G. W. Irwin, "A new gradient descent approach for local learning of fuzzy neural models," IEEE Trans. Fuzzy Syst., vol. 21, no. 1, pp. 30-44, Feb. 2013.
    • (2013) IEEE Trans. Fuzzy Syst. , vol.21 , Issue.1 , pp. 30-44
    • Zhao, W.Q.1    Li, K.2    Irwin, G.W.3
  • 35
    • 24644469161 scopus 로고    scopus 로고
    • A TSK-type neuro fuzzy network approach to system modeling problems
    • Aug.
    • C. S. Ouyang, W. J. Lee, and S. J. Lee, "A TSK-type neuro fuzzy network approach to system modeling problems," IEEE Trans. Syst., Man, Cybern., vol. 35, no. 4, pp. 751-767, Aug. 2005.
    • (2005) IEEE Trans. Syst., Man, Cybern. , vol.35 , Issue.4 , pp. 751-767
    • Ouyang, C.S.1    Lee, W.J.2    Lee, S.J.3
  • 36
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Mar.
    • K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks," IEEE Trans. Neural Netw., vol. 1, no. 1, pp. 4-26, Mar. 1990.
    • (1990) IEEE Trans. Neural Netw. , vol.1 , Issue.1 , pp. 4-26
    • Narendra, K.S.1    Parthasarathy, K.2
  • 37
    • 0027601884 scopus 로고
    • ANFIS: Adaptive network-based fuzzy inference system
    • May/Jun.
    • R. Jang, "ANFIS: Adaptive network-based fuzzy inference system," IEEE Trans. Syst., Man, Cybern. vol. 23, no. 3, pp. 665-685, May/Jun. 1993.
    • (1993) IEEE Trans. Syst., Man, Cybern. , vol.23 , Issue.3 , pp. 665-685
    • Jang, R.1
  • 38
    • 79955450067 scopus 로고    scopus 로고
    • A two-stage online prediction method for a blast furnace gas system and its application
    • May
    • J. Zhao, W. Wang, Y. Liu, and W. Pedrycz, "A two-stage online prediction method for a blast furnace gas system and its application," IEEE Trans. Control Syst. Technol., vol. 19, no. 3, pp. 507-520, May 2011.
    • (2011) IEEE Trans. Control Syst. Technol. , vol.19 , Issue.3 , pp. 507-520
    • Zhao, J.1    Wang, W.2    Liu, Y.3    Pedrycz, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.