메뉴 건너뛰기




Volumn 5636 LNCS, Issue , 2009, Pages 423-434

A general and unifying framework for feature construction, in image-based pattern classification

Author keywords

[No Author keywords available]

Indexed keywords

BASIS FUNCTIONS; DISCRIMINATION ABILITY; FEATURE CONSTRUCTION; GENERALIZATION ABILITY; HIGH-DIMENSIONAL; IMAGE-BASED; MACHINE-LEARNING; MEDICAL IMAGES; NONNEGATIVE MATRIX FACTORIZATION; NUMERICAL SOLUTION; OPTIMAL BASIS; OPTIMIZATION FRAMEWORK; PATTERN CLASSIFICATION; SPARSE DECOMPOSITION; SPATIAL SMOOTHNESS; SPECIFIC TASKS;

EID: 70349336340     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-02498-6_35     Document Type: Conference Paper
Times cited : (26)

References (24)
  • 1
    • 34548795886 scopus 로고    scopus 로고
    • Multivariate deformation-based analysis of brain atrophy to predict disease in mild cognitive impairment
    • Teipel, S.J., Born, C., Ewers, M., Bokde, A.L., Reiser, M.F., M̈uller, H.J., Hampel, H.: Multivariate deformation-based analysis of brain atrophy to predict disease in mild cognitive impairment. NeuroImage 38(1), 13-24 (2007)
    • (2007) NeuroImage , vol.38 , Issue.1 , pp. 13-24
    • Teipel, S.J.1    Born, C.2    Ewers, M.3    Bokde, A.L.4    Reiser, M.F.5    M̈uller, H.J.6    Hampel, H.7
  • 2
    • 42649102966 scopus 로고    scopus 로고
    • 3D characterization of brain atrophy in cognitive impairment using tensor-based morphometry
    • Hua, X., et al.: 3D characterization of brain atrophy in cognitive impairment using tensor-based morphometry. NeuroImage 41(1), 19-34 (2008)
    • (2008) NeuroImage , vol.41 , Issue.1 , pp. 19-34
    • Hua, X.1
  • 3
    • 0035208958 scopus 로고    scopus 로고
    • Voxel-based morphometry using the ravens maps: Methods and validation using simulated longitudinal atrophy
    • Davatzikos, C., Genc, A., Xu, D., Resnick, S.M.: Voxel-based morphometry using the ravens maps: Methods and validation using simulated longitudinal atrophy. NeuroImage 14(6), 1361-1369 (2001)
    • (2001) NeuroImage , vol.14 , Issue.6 , pp. 1361-1369
    • Davatzikos, C.1    Genc, A.2    Xu, D.3    Resnick, S.M.4
  • 5
    • 0033933649 scopus 로고    scopus 로고
    • Voxel-based morphometry-the methods
    • Ashburner, J., Friston, K.J.: Voxel-based morphometry-the methods. NeuroIm-age 11(6), 805-821 (2000)
    • (2000) NeuroIm-age , vol.11 , Issue.6 , pp. 805-821
    • Ashburner, J.1    Friston, K.J.2
  • 6
    • 33751109018 scopus 로고    scopus 로고
    • Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment
    • Snook, L., Plewesa, C., Beaulieu, C.: Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment. NeuroImage 34(1), 243-252 (2007)
    • (2007) NeuroImage , vol.34 , Issue.1 , pp. 243-252
    • Snook, L.1    Plewesa, C.2    Beaulieu, C.3
  • 7
    • 70349154086 scopus 로고    scopus 로고
    • Voxel-based analysis of confounding effects of age and dementia severity on cerebral metabolism in alzheimer's disease
    • Salmon, E., Collette, F., Degueldre, C., Lemaire, C., Franck, G.: Voxel-based analysis of confounding effects of age and dementia severity on cerebral metabolism in alzheimer's disease. Human
    • Human
    • Salmon, E.1    Collette, F.2    Degueldre, C.3    Lemaire, C.4    Franck, G.5
  • 8
    • 4344667151 scopus 로고    scopus 로고
    • Why voxel-based morphometric analysis should be used with great caution when characterizing group differences
    • Davatzikos, C.: Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. NeuroImage 23, 17-20 (2004)
    • (2004) NeuroImage , vol.23 , pp. 17-20
    • Davatzikos, C.1
  • 9
    • 33846264886 scopus 로고    scopus 로고
    • Compare: Classification of morphological patterns using adaptive regional elements
    • Fan, Y., Shen, D., Gur, R.C., Gur, R.E., Davatzikos, C.: Compare: Classification of morphological patterns using adaptive regional elements. IEEE Trans. on Med. Imag. 26(1), 93-105 (2007)
    • (2007) IEEE Trans. on Med. Imag. , vol.26 , Issue.1 , pp. 93-105
    • Fan, Y.1    Shen, D.2    Gur, R.C.3    Gur, R.E.4    Davatzikos, C.5
  • 12
    • 58849118604 scopus 로고    scopus 로고
    • Discovering structure in the space of activation profiles in fMRI
    • Metaxas, D., Axel, L., Fichtinger, G., ekely, G. (eds.) MICCAI 2008, Part I. Springer, Heidelberg
    • Lashkari, D., Vul, E., Kanwisher, N., Golland, P.: Discovering structure in the space of activation profiles in fMRI. In: Metaxas, D., Axel, L., Fichtinger, G., ekely, G. (eds.) MICCAI 2008, Part I. LNCS, vol.5241, pp. 1015-1024. Springer, Heidelberg (2008)
    • (2008) LNCS , vol.5241 , pp. 1015-1024
    • Lashkari, D.1    Vul, E.2    Kanwisher, N.3    Golland, P.4
  • 15
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classifi-cation using support vector machines
    • Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classifi-cation using support vector machines. Machine Learning 46, 389-422 (2002)
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 17
    • 49149085985 scopus 로고    scopus 로고
    • When does non-negative matrix factorization give a correct decomposition into parts?
    • Donoho, D., Stodden, V.: When does non-negative matrix factorization give a correct decomposition into parts? In: NIPS, vol.16, pp. 1141-1148 (2004)
    • (2004) NIPS , vol.16 , pp. 1141-1148
    • Donoho, D.1    Stodden, V.2
  • 18
    • 70349102767 scopus 로고    scopus 로고
    • Technical report, University of Texas at Austin, Austin, TX 78712, USA (June)
    • Sra, S., Dhillon, I.S.: Technical report, Dept. Computer Science, University of Texas at Austin, Austin, TX 78712, USA (June)
    • Dept. Computer Science
    • Sra, S.1    Dhillon, I.S.2
  • 20
    • 54149110815 scopus 로고    scopus 로고
    • Blind image separation using nonnegative matrix factorization with gibbs smoothing
    • Ishikawa, M., Doya, K., Miyamoto, H., Ya-makawa, T. (eds.) ICONIP 2007, Part II. Springer, Heidelberg
    • Zdunek, R., Cichocki, A.: Blind image separation using nonnegative matrix factorization with gibbs smoothing. In: Ishikawa, M., Doya, K., Miyamoto, H., Ya-makawa, T. (eds.) ICONIP 2007, Part II. LNCS, vol.4985, pp. 519-528. Springer, Heidelberg (2008)
    • (2008) LNCS , vol.4985 , pp. 519-528
    • Zdunek, R.1    Cichocki, A.2
  • 23
    • 0037229905 scopus 로고    scopus 로고
    • Very high resolution morphometry using mass-preserving deformations and hammer elastic registration
    • Shen, D., Davatzikos, C.: Very high resolution morphometry using mass-preserving deformations and hammer elastic registration. NeuroImage 18, 28-41 (2003)
    • (2003) NeuroImage , vol.18 , pp. 28-41
    • Shen, D.1    Davatzikos, C.2
  • 24
    • 0003957032 scopus 로고    scopus 로고
    • Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn
    • Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Elsevier, Amsterdam (2005)
    • (2005) Elsevier, Amsterdam
    • Witten, I.H.1    Frank, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.