-
1
-
-
77952641834
-
Steganalysis by subtractive pixel adjacency matrix
-
Pevny, T., Bas, P., and Fridrich, J., "Steganalysis by subtractive pixel adjacency matrix," IEEE Transactions on information Forensics and Security 5(2), 215-224 (2010).
-
(2010)
IEEE Transactions on Information Forensics and Security
, vol.5
, Issue.2
, pp. 215-224
-
-
Pevny, T.1
Bas, P.2
Fridrich, J.3
-
2
-
-
84860434682
-
Rich models for steganalysis of digital images
-
Fridrich, J. and Kodovsky, J., "Rich models for steganalysis of digital images," IEEE Transactions on Information Forensics and Security 7(3), 868-882 (2012).
-
(2012)
IEEE Transactions on Information Forensics and Security
, vol.7
, Issue.3
, pp. 868-882
-
-
Fridrich, J.1
Kodovsky, J.2
-
3
-
-
84874405772
-
Textural features for steganalysis
-
Springer
-
Shi, Y. Q., Sutthiwan, P., and Chen, L., "Textural features for steganalysis," in [Information Hiding], 63-77, Springer (2013).
-
(2013)
Information Hiding
, pp. 63-77
-
-
Shi, Y.Q.1
Sutthiwan, P.2
Chen, L.3
-
4
-
-
84878455879
-
Random projections of residuals as an alternative to cooccurrences in steganalysis
-
International Society for Optics and Photonics
-
Holub, V., Fridrich, J., and Denemark, T., "Random projections of residuals as an alternative to cooccurrences in steganalysis," in [IS&T/SPIE Electronic Imaging], 86650L-86650L, International Society for Optics and Photonics (2013).
-
(2013)
IS&T/SPIE Electronic Imaging
, pp. 86650L
-
-
Holub, V.1
Fridrich, J.2
Denemark, T.3
-
5
-
-
84888323613
-
Random projections of residuals for digital image steganalysis
-
Holub, V. and Fridrich, J., "Random projections of residuals for digital image steganalysis," IEEE Trans-actions on Information Forensics and Security 8(12), 1996-2006 (2013).
-
(2013)
IEEE Trans-actions on Information Forensics and Security
, vol.8
, Issue.12
, pp. 1996-2006
-
-
Holub, V.1
Fridrich, J.2
-
6
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G. E. and Salakhutdinov, R. R., "Reducing the dimensionality of data with neural networks," Science 313(5786), 504-507 (2006).
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
8
-
-
59449087310
-
Exploring strategies for training deep neural networks
-
Larochelle, H., Bengio, Y., Louradour, J., and Lamblin, P., "Exploring strategies for training deep neural networks," The Journal of Machine Learning Research10, 1-40 (2009).
-
(2009)
The Journal of Machine Learning Research
, vol.10
, pp. 1-40
-
-
Larochelle, H.1
Bengio, Y.2
Louradour, J.3
Lamblin, P.4
-
9
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P., "Gradient-based learning applied to document recognition," Proceedings of the IEEE86(11), 2278-2324 (1998).
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
10
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G., Osindero, S., and Teh, Y.-W., "A fast learning algorithm for deep belief nets," Neural compu-tation18(7), 1527-1554 (2006).
-
(2006)
Neural Compu-tation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.1
Osindero, S.2
Teh, Y.-W.3
-
11
-
-
34948870900
-
Unsupervised learning of invariant feature hierarchies with applications to object recognition
-
IEEE
-
Ranzato, M., Huang, F. J., Boureau, Y.-L., and LeCun, Y., "Unsupervised learning of invariant feature hierarchies with applications to object recognition," in [IEEE Conference on Computer Vision and Pattern Recognition], 1-8, IEEE (2007).
-
(2007)
IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-8
-
-
Ranzato, M.1
Huang, F.J.2
Boureau, Y.-L.3
Lecun, Y.4
-
13
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., and Hinton, G. E., "Imagenet classification with deep convolutional neural networks," in [Advances in neural information processing systems], 1097-1105 (2012).
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
14
-
-
84881039921
-
Flexible, high performance convolutional neural networks for image classification
-
Ciresan, D. C., Meier, U., Masci, J., Maria Gambardella, L., and Schmidhuber, J., "Flexible, high performance convolutional neural networks for image classification," in [IJCAI Proceedings-International Joint Conference on artificial Intelligence], 22(1), 1237 (2011).
-
(2011)
IJCAI Proceedings-International Joint Conference on Artificial Intelligence
, vol.22
, Issue.1
, pp. 1237
-
-
Ciresan, D.C.1
Meier, U.2
Masci, J.3
Maria Gambardella, L.4
Schmidhuber, J.5
-
15
-
-
0346325932
-
Convolutional neural networks for image processing: An application in robot vision
-
Springer
-
Browne, M. and Ghidary, S. S., "Convolutional neural networks for image processing: an application in robot vision," in [AI 2003: Advances in artificial Intelligence], 641-652, Springer (2003).
-
(2003)
AI 2003: Advances in Artificial Intelligence
, pp. 641-652
-
-
Browne, M.1
Ghidary, S.S.2
-
17
-
-
77956502203
-
A theoretical analysis of feature pooling in visual recognition
-
Boureau, Y.-L., Ponce, J., and LeCun, Y., "A theoretical analysis of feature pooling in visual recognition," in [Proceedings of the 27th International Conference on Machine Learning (ICML-10)], 111-118 (2010).
-
(2010)
Proceedings of the 27th International Conference on Machine Learning (ICML-10)
, pp. 111-118
-
-
Boureau, Y.-L.1
Ponce, J.2
Lecun, Y.3
-
18
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
ACM
-
Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y., "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," in [Proceedings of the 26th Annual International Conference on Machine Learning], 609-616, ACM (2009).
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning
, pp. 609-616
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
19
-
-
84867720412
-
-
arXiv preprint arXiv:1207.0580
-
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R., "Improving neural networks by preventing co-adaptation of feature detectors," arXiv preprint arXiv:1207.0580(2012).
-
(2012)
Improving Neural Networks by Preventing Co-adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.R.5
-
22
-
-
80053005547
-
Break our steganographic system: The ins and outs of organizing boss
-
Springer
-
Bas, P., Filler, T., and Pevny, T., " break our steganographic system: The ins and outs of organizing boss," in [Information Hiding], 59-70, Springer (2011).
-
(2011)
Information Hiding
, pp. 59-70
-
-
Bas, P.1
Filler, T.2
Pevny, T.3
-
23
-
-
78549231320
-
Using high-dimensional image models to perform highly undetectable steganography
-
Springer
-
Pevny, T., Filler, T., and Bas, P., "Using high-dimensional image models to perform highly undetectable steganography," in [Information hiding], 161-177, Springer (2010).
-
(2010)
Information Hiding
, pp. 161-177
-
-
Pevny, T.1
Filler, T.2
Bas, P.3
|