메뉴 건너뛰기




Volumn 50, Issue 3, 2015, Pages 285-299

Using Principal Components as Auxiliary Variables in Missing Data Estimation

Author keywords

[No Author keywords available]

Indexed keywords

BEHAVIORAL RESEARCH; HUMAN; INFANT; INTERPERSONAL COMMUNICATION; MONTE CARLO METHOD; PRESCHOOL CHILD; PRINCIPAL COMPONENT ANALYSIS; SAMPLE SIZE; STATISTICAL ANALYSIS; STATISTICAL BIAS; STATISTICAL MODEL;

EID: 84931569171     PISSN: 00273171     EISSN: None     Source Type: Journal    
DOI: 10.1080/00273171.2014.999267     Document Type: Article
Times cited : (110)

References (27)
  • 2
    • 38749111405 scopus 로고    scopus 로고
    • Out of sight, not out of mind: Strategies for handling missing data
    • E.R.Buhi,, P.Goodson,, & T.B.Neilands, (2008). Out of sight, not out of mind: Strategies for handling missing data. American Journal of Health Behavior, 32(1), 83–92.
    • (2008) American Journal of Health Behavior , vol.32 , Issue.1 , pp. 83-92
    • Buhi, E.R.1    Goodson, P.2    Neilands, T.B.3
  • 3
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • L.M.Collins,, J.L.Schafer,, & C.M.Kam, (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6(4), 330–351.
    • (2001) Psychological Methods , vol.6 , Issue.4 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.M.3
  • 4
    • 0035537304 scopus 로고    scopus 로고
    • The performance of the full information maximum likelihood estimator in multiple regression models with missing data
    • C.K.Enders, (2001). The performance of the full information maximum likelihood estimator in multiple regression models with missing data. Educational and Psychological Measurement, 61(5), 713–740.
    • (2001) Educational and Psychological Measurement , vol.61 , Issue.5 , pp. 713-740
    • Enders, C.K.1
  • 5
    • 0036400704 scopus 로고    scopus 로고
    • Applying the Bollen-Stine bootstrap for goodness-of-fit measures to structural equation models with missing data
    • C.K.Enders, (2002). Applying the Bollen-Stine bootstrap for goodness-of-fit measures to structural equation models with missing data. Multivariate Behavioral Research, 37, 359–377.
    • (2002) Multivariate Behavioral Research , vol.37 , pp. 359-377
    • Enders, C.K.1
  • 6
    • 0142073292 scopus 로고    scopus 로고
    • Using the expectation maximization algorithm to estimate coefficient alpha for scales with item-level missing data
    • C.K.Enders, (2003). Using the expectation maximization algorithm to estimate coefficient alpha for scales with item-level missing data. Psychological Methods, 8(3), 322–337.
    • (2003) Psychological Methods , vol.8 , Issue.3 , pp. 322-337
    • Enders, C.K.1
  • 7
    • 47949104235 scopus 로고    scopus 로고
    • A note on the use of missing auxiliary variables in full information maximum likelihood-based structural equation models
    • C.K.Enders, (2008). A note on the use of missing auxiliary variables in full information maximum likelihood-based structural equation models. Structural Equation Modeling, 15(3), 434–448.
    • (2008) Structural Equation Modeling , vol.15 , Issue.3 , pp. 434-448
    • Enders, C.K.1
  • 9
    • 0000885702 scopus 로고    scopus 로고
    • The relative performance of full information maximum likelihood estimation for missing data in structural equation models
    • C.K.Enders,, & D.L.Bandalos, (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8(3), 430–457.
    • (2001) Structural Equation Modeling , vol.8 , Issue.3 , pp. 430-457
    • Enders, C.K.1    Bandalos, D.L.2
  • 10
    • 78651317614 scopus 로고    scopus 로고
    • Multiple imputation strategies for multiple group structural equation models
    • C.K.Enders,, & A.C.Gottschall, (2011). Multiple imputation strategies for multiple group structural equation models. Structural Equation Modeling, 18(1), 35–54.
    • (2011) Structural Equation Modeling , vol.18 , Issue.1 , pp. 35-54
    • Enders, C.K.1    Gottschall, A.C.2
  • 11
    • 2642541763 scopus 로고    scopus 로고
    • Using an EM covariance matrix to estimate structural equation models with missing data: Choosing an adjusted sample size to improve the accuracy of inferences
    • C.K.Enders,, & J.L.Peugh, (2004). Using an EM covariance matrix to estimate structural equation models with missing data: Choosing an adjusted sample size to improve the accuracy of inferences. Structural Equation Modeling, 11(1), 1–19.
    • (2004) Structural Equation Modeling , vol.11 , Issue.1 , pp. 1-19
    • Enders, C.K.1    Peugh, J.L.2
  • 12
    • 3943099304 scopus 로고    scopus 로고
    • The past, present, and future of curriculum-based measurement research
    • L.S.Fuchs, (2004). The past, present, and future of curriculum-based measurement research. School Psychology Review, 33(2), 188–192.
    • (2004) School Psychology Review , vol.33 , Issue.2 , pp. 188-192
    • Fuchs, L.S.1
  • 13
    • 0347249765 scopus 로고    scopus 로고
    • Adding missing-data-relevant variables to FIML-based structural equation models
    • J.W.Graham, (2003). Adding missing-data-relevant variables to FIML-based structural equation models. Structural Equation Modeling, 10(1), 80–100.
    • (2003) Structural Equation Modeling , vol.10 , Issue.1 , pp. 80-100
    • Graham, J.W.1
  • 14
    • 60549085055 scopus 로고    scopus 로고
    • Missing data analysis: Making it work in the real world
    • J.W.Graham, (2009). Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60, 549–576.
    • (2009) Annual Review of Psychology , vol.60 , pp. 549-576
    • Graham, J.W.1
  • 15
    • 1242302480 scopus 로고    scopus 로고
    • Methods for handling missing data
    • Schinka J.A., Velicer W.F., (eds), New York, NY: Wiley
    • J.W.Graham,, P.E.Cumsille,, & A.E.Shevock, (2013). Methods for handling missing data. In J.A.Schinka & W.F.Velicer (Eds.), Research Methods in Psychology (Vol. 3). New York, NY: Wiley.
    • (2013) Research Methods in Psychology
    • Graham, J.W.1    Cumsille, P.E.2    Shevock, A.E.3
  • 16
    • 34548451124 scopus 로고    scopus 로고
    • How many imputations are really needed? Some practical clarifications of multiple imputation theory
    • J.W.Graham,, A.E.Olchowski,, & T.D.Gilreath, (2007). How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science, 8(3), 206–213.
    • (2007) Prevention Science , vol.8 , Issue.3 , pp. 206-213
    • Graham, J.W.1    Olchowski, A.E.2    Gilreath, T.D.3
  • 18
    • 84870333136 scopus 로고    scopus 로고
    • Auxiliary variables in multiple imputation in regression with missing X: A warning against including too many in small sample research
    • J.Hardt,, M.Herke,, & R.Leonhart, (2012). Auxiliary variables in multiple imputation in regression with missing X: A warning against including too many in small sample research. BMC Medical Research Methodology, 12(1), 184–197.
    • (2012) BMC Medical Research Methodology , vol.12 , Issue.1 , pp. 184-197
    • Hardt, J.1    Herke, M.2    Leonhart, R.3
  • 22
    • 12744272198 scopus 로고    scopus 로고
    • Missing data in educational research: A review of reporting practices and suggestions for improvement
    • J.L.Peugh,, & C.K.Enders, (2004). Missing data in educational research: A review of reporting practices and suggestions for improvement. Review of Educational Research, 74, 525–556.
    • (2004) Review of Educational Research , vol.74 , pp. 525-556
    • Peugh, J.L.1    Enders, C.K.2
  • 24
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • J.L.Schafer,, & J.W.Graham, (2002). Missing data: Our view of the state of the art. Psychological Methods, 7(2), 147–177.
    • (2002) Psychological Methods , vol.7 , Issue.2 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 25
    • 69149105188 scopus 로고    scopus 로고
    • How to impute interactions, squares, and other transformed variables
    • T.Von Hippel,. 2009. How to impute interactions, squares, and other transformed variables. Sociological Methodology, 39(1), 265–291.
    • (2009) Sociological Methodology , vol.39 , Issue.1 , pp. 265-291
    • Von Hippel, T.1
  • 26
    • 84925830379 scopus 로고    scopus 로고
    • Common factors versus components: Principals and principles, errors and misconceptions
    • Cudeck R., MacCallum R.C., (eds), Mahwah, NJ: Lawrence Erlbaum Associates
    • K.F.Widaman, (2007). Common factors versus components: Principals and principles, errors and misconceptions. In R.Cudeck & R.C.MacCallum (Eds.), Factor analysis at 100 (pp. 177–203). Mahwah, NJ: Lawrence Erlbaum Associates.
    • (2007) Factor analysis at 100 , pp. 177-203
    • Widaman, K.F.1
  • 27
    • 70449834993 scopus 로고    scopus 로고
    • The effect of auxiliary variables and multiple imputation on parameter estimation in confirmatory factor analysis
    • J.E.Yoo, (2009). The effect of auxiliary variables and multiple imputation on parameter estimation in confirmatory factor analysis. Educational and Psychological Measurement, 69, 929–947.
    • (2009) Educational and Psychological Measurement , vol.69 , pp. 929-947
    • Yoo, J.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.