메뉴 건너뛰기




Volumn 11, Issue 1, 2004, Pages 1-19

Using an EM covariance matrix to estimate structural equation models with missing data: Choosing an adjusted sample size to improve the accuracy of inferences

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTER SOFTWARE; HARMONIC ANALYSIS; ITERATIVE METHODS; MATRIX ALGEBRA; MAXIMUM LIKELIHOOD ESTIMATION;

EID: 2642541763     PISSN: 10705511     EISSN: None     Source Type: Journal    
DOI: 10.1207/S15328007SEM1101_1     Document Type: Article
Times cited : (108)

References (18)
  • 1
    • 0002914202 scopus 로고    scopus 로고
    • Full information estimation in the presence of incomplete data
    • G. A. Marcoulides & R. E. Schumacker (Eds.). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
    • Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling (pp. 243-277). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
    • (1996) Advanced Structural Equation Modeling , pp. 243-277
    • Arbuckle, J.L.1
  • 3
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing-data procedures
    • Collins, L. M., Schafer, J. L., & Kam, C.-M. (2001). A comparison of inclusive and restrictive strategies in modern missing-data procedures. Psychological Methods, 6, 330-351.
    • (2001) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.-M.3
  • 5
    • 0035756118 scopus 로고    scopus 로고
    • The impact of nonnormality on full information maximum likelihood estimation for structural equations models with missing data
    • Enders, C. K. (2001a). The impact of nonnormality on full information maximum likelihood estimation for structural equations models with missing data. Psychological Methods, 6, 352-370.
    • (2001) Psychological Methods , vol.6 , pp. 352-370
    • Enders, C.K.1
  • 6
    • 0035537304 scopus 로고    scopus 로고
    • The performance of the full information maximum likelihood estimator in multiple regression models with missing data
    • Enders, C. K. (2001b). The performance of the full information maximum likelihood estimator in multiple regression models with missing data. Educational and Psychological Measurement, 61, 713-740.
    • (2001) Educational and Psychological Measurement , vol.61 , pp. 713-740
    • Enders, C.K.1
  • 7
    • 0000885702 scopus 로고    scopus 로고
    • The relative performance of full information maximum likelihood estimation for missing data in structural equation models
    • Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8, 430-457.
    • (2001) Structural Equation Modeling , vol.8 , pp. 430-457
    • Enders, C.K.1    Bandalos, D.L.2
  • 8
    • 0347249765 scopus 로고    scopus 로고
    • Adding missing-data relevant variables to FIML-based structural equation models
    • Graham, J. W. (2003). Adding missing-data relevant variables to FIML-based structural equation models. Structural Equation Modeling, 10, 80-100.
    • (2003) Structural Equation Modeling , vol.10 , pp. 80-100
    • Graham, J.W.1
  • 10
    • 0030527014 scopus 로고    scopus 로고
    • Maximizing the usefulness of data obtained with planned missing value patterns: An application of maximum likelihood procedures
    • Graham, J. W., Hofer, S. M., & MacKinnon, D. P. (1996). Maximizing the usefulness of data obtained with planned missing value patterns: An application of maximum likelihood procedures. Multivariate Behavioral Research, 31, 197-218.
    • (1996) Multivariate Behavioral Research , vol.31 , pp. 197-218
    • Graham, J.W.1    Hofer, S.M.2    Mackinnon, D.P.3
  • 11
    • 0003245614 scopus 로고    scopus 로고
    • On the performance of multiple imputation for multivariate data with small sample size
    • R. H. Hoyle (Ed.). Thousand Oaks, CA: Sage
    • Graham, J. W., & Schafer, J. L. (1999). On the performance of multiple imputation for multivariate data with small sample size. In R. H. Hoyle (Ed.), Statistical strategies for small sample research (pp. 1-29). Thousand Oaks, CA: Sage.
    • (1999) Statistical Strategies for Small Sample Research , pp. 1-29
    • Graham, J.W.1    Schafer, J.L.2
  • 13
    • 0040731105 scopus 로고    scopus 로고
    • Pairwise deletion for missing data in structural equation models: Nonpositive definite matrices, parameter estimates, goodness of fit, and adjusted sample sizes
    • Marsh, H. W. (1998). Pairwise deletion for missing data in structural equation models: Nonpositive definite matrices, parameter estimates, goodness of fit, and adjusted sample sizes. Structural Equation Modeling, 5, 22-36.
    • (1998) Structural Equation Modeling , vol.5 , pp. 22-36
    • Marsh, H.W.1
  • 14
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 16
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147-177.
    • (2002) Psychological Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 17
    • 0032219074 scopus 로고    scopus 로고
    • Multiple imputation for multivariate missing data problems: A data analyst's perspective
    • Schafer, J. L., & Olsen, M. K. (1998). Multiple imputation for multivariate missing data problems: A data analyst's perspective. Multivariate Behavioral Research, 33, 545-571.
    • (1998) Multivariate Behavioral Research , vol.33 , pp. 545-571
    • Schafer, J.L.1    Olsen, M.K.2
  • 18
    • 0002298117 scopus 로고    scopus 로고
    • Longitudinal and multi-group modeling with missing data
    • T. D. Little, K. U. Schnabel, & J. Baumert (Eds.). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
    • Wothke, W. (2000). Longitudinal and multi-group modeling with missing data. In T. D. Little, K. U. Schnabel, & J. Baumert (Eds.), Modeling longitudinal and multiple group data: Practical issues, applied approaches and specific examples (pp. 219-240). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
    • (2000) Modeling Longitudinal and Multiple Group Data: Practical Issues, Applied Approaches and Specific Examples , pp. 219-240
    • Wothke, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.