-
1
-
-
0002914202
-
Full information estimation in the presence of incomplete data
-
G. A. Marcoulides & R. E. Schumacker (Eds.). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
-
Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling (pp. 243-277). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
-
(1996)
Advanced Structural Equation Modeling
, pp. 243-277
-
-
Arbuckle, J.L.1
-
3
-
-
0035755636
-
A comparison of inclusive and restrictive strategies in modern missing-data procedures
-
Collins, L. M., Schafer, J. L., & Kam, C.-M. (2001). A comparison of inclusive and restrictive strategies in modern missing-data procedures. Psychological Methods, 6, 330-351.
-
(2001)
Psychological Methods
, vol.6
, pp. 330-351
-
-
Collins, L.M.1
Schafer, J.L.2
Kam, C.-M.3
-
4
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1-38.
-
(1977)
Journal of the Royal Statistical Society, Series B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
5
-
-
0035756118
-
The impact of nonnormality on full information maximum likelihood estimation for structural equations models with missing data
-
Enders, C. K. (2001a). The impact of nonnormality on full information maximum likelihood estimation for structural equations models with missing data. Psychological Methods, 6, 352-370.
-
(2001)
Psychological Methods
, vol.6
, pp. 352-370
-
-
Enders, C.K.1
-
6
-
-
0035537304
-
The performance of the full information maximum likelihood estimator in multiple regression models with missing data
-
Enders, C. K. (2001b). The performance of the full information maximum likelihood estimator in multiple regression models with missing data. Educational and Psychological Measurement, 61, 713-740.
-
(2001)
Educational and Psychological Measurement
, vol.61
, pp. 713-740
-
-
Enders, C.K.1
-
7
-
-
0000885702
-
The relative performance of full information maximum likelihood estimation for missing data in structural equation models
-
Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8, 430-457.
-
(2001)
Structural Equation Modeling
, vol.8
, pp. 430-457
-
-
Enders, C.K.1
Bandalos, D.L.2
-
8
-
-
0347249765
-
Adding missing-data relevant variables to FIML-based structural equation models
-
Graham, J. W. (2003). Adding missing-data relevant variables to FIML-based structural equation models. Structural Equation Modeling, 10, 80-100.
-
(2003)
Structural Equation Modeling
, vol.10
, pp. 80-100
-
-
Graham, J.W.1
-
9
-
-
0002717645
-
Analysis with missing data in prevention research
-
K. Bryant, M. Windle, & S. West (Eds.). Washington, DC: American Psychological Association
-
Graham, J. W., Hofer, S. M., Donaldson, S. I., MacKinnon, D. P., & Schafer, J. L. (1997). Analysis with missing data in prevention research. In K. Bryant, M. Windle, & S. West (Eds.), The science of prevention: Methodological advances from alcohol and substance abuse research (pp. 325-366). Washington, DC: American Psychological Association.
-
(1997)
The Science of Prevention: Methodological Advances from Alcohol and Substance Abuse Research
, pp. 325-366
-
-
Graham, J.W.1
Hofer, S.M.2
Donaldson, S.I.3
MacKinnon, D.P.4
Schafer, J.L.5
-
10
-
-
0030527014
-
Maximizing the usefulness of data obtained with planned missing value patterns: An application of maximum likelihood procedures
-
Graham, J. W., Hofer, S. M., & MacKinnon, D. P. (1996). Maximizing the usefulness of data obtained with planned missing value patterns: An application of maximum likelihood procedures. Multivariate Behavioral Research, 31, 197-218.
-
(1996)
Multivariate Behavioral Research
, vol.31
, pp. 197-218
-
-
Graham, J.W.1
Hofer, S.M.2
Mackinnon, D.P.3
-
11
-
-
0003245614
-
On the performance of multiple imputation for multivariate data with small sample size
-
R. H. Hoyle (Ed.). Thousand Oaks, CA: Sage
-
Graham, J. W., & Schafer, J. L. (1999). On the performance of multiple imputation for multivariate data with small sample size. In R. H. Hoyle (Ed.), Statistical strategies for small sample research (pp. 1-29). Thousand Oaks, CA: Sage.
-
(1999)
Statistical Strategies for Small Sample Research
, pp. 1-29
-
-
Graham, J.W.1
Schafer, J.L.2
-
13
-
-
0040731105
-
Pairwise deletion for missing data in structural equation models: Nonpositive definite matrices, parameter estimates, goodness of fit, and adjusted sample sizes
-
Marsh, H. W. (1998). Pairwise deletion for missing data in structural equation models: Nonpositive definite matrices, parameter estimates, goodness of fit, and adjusted sample sizes. Structural Equation Modeling, 5, 22-36.
-
(1998)
Structural Equation Modeling
, vol.5
, pp. 22-36
-
-
Marsh, H.W.1
-
14
-
-
0017133178
-
Inference and missing data
-
Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592.
-
(1976)
Biometrika
, vol.63
, pp. 581-592
-
-
Rubin, D.B.1
-
16
-
-
85047673373
-
Missing data: Our view of the state of the art
-
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147-177.
-
(2002)
Psychological Methods
, vol.7
, pp. 147-177
-
-
Schafer, J.L.1
Graham, J.W.2
-
17
-
-
0032219074
-
Multiple imputation for multivariate missing data problems: A data analyst's perspective
-
Schafer, J. L., & Olsen, M. K. (1998). Multiple imputation for multivariate missing data problems: A data analyst's perspective. Multivariate Behavioral Research, 33, 545-571.
-
(1998)
Multivariate Behavioral Research
, vol.33
, pp. 545-571
-
-
Schafer, J.L.1
Olsen, M.K.2
-
18
-
-
0002298117
-
Longitudinal and multi-group modeling with missing data
-
T. D. Little, K. U. Schnabel, & J. Baumert (Eds.). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
-
Wothke, W. (2000). Longitudinal and multi-group modeling with missing data. In T. D. Little, K. U. Schnabel, & J. Baumert (Eds.), Modeling longitudinal and multiple group data: Practical issues, applied approaches and specific examples (pp. 219-240). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
-
(2000)
Modeling Longitudinal and Multiple Group Data: Practical Issues, Applied Approaches and Specific Examples
, pp. 219-240
-
-
Wothke, W.1
|