-
2
-
-
0002914202
-
Full information estimation in the presence of incomplete data
-
In G. A. Marcoulides & R. E. Schumacker (Eds.), Mahwah, NJ: Lawrence Erlbaum Associates
-
Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling (pp. 243-277). Mahwah, NJ: Lawrence Erlbaum Associates.
-
(1996)
Advanced Structural Equation Modeling
, pp. 243-277
-
-
Arbuckle, J.L.1
-
3
-
-
54049109688
-
What improves with increased missing data imputations?
-
Bodner, T. E. (2008). What improves with increased missing data imputations? Structural Equation Modeling, 15, 651-675.
-
(2008)
Structural Equation Modeling
, vol.15
, pp. 651-675
-
-
Bodner, T.E.1
-
5
-
-
0035755636
-
A comparison of inclusive and restrictive strategies in modern missing data procedures
-
Collins, L. M., Schafer, J. L., & Kam, C-M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330-351.
-
(2001)
Psychological Methods
, vol.6
, pp. 330-351
-
-
Collins, L.M.1
Schafer, J.L.2
Kam, C.-M.3
-
6
-
-
0035756118
-
The impact of nonnormality on full information maximum likelihood estimation for structural equation models with missing data
-
Enders, C. K. (2001). The impact of nonnormality on full information maximum likelihood estimation for structural equation models with missing data. Psychological Methods, 6, 352-370.
-
(2001)
Psychological Methods
, vol.6
, pp. 352-370
-
-
Enders, C.K.1
-
7
-
-
33645894571
-
Analyzing structural equation models with missing data
-
In G. R. Hancock & R. O. Mueller (Eds.), Greenwich, CT: Information Age
-
Enders, C. K. (2006a). Analyzing structural equation models with missing data. In G. R. Hancock & R. O. Mueller (Eds.), A second course in structural equation modeling (pp. 313-344). Greenwich, CT: Information Age.
-
(2006)
A Second Course In Structural Equation Modeling
, pp. 313-344
-
-
Enders, C.K.1
-
8
-
-
33746068696
-
A primer on the use of modern missing data methods in psychosomatic medicine research
-
Enders, C. K. (2006b). A primer on the use of modern missing data methods in psychosomatic medicine research. Psychosomatic Medicine, 68, 427-436.
-
(2006)
Psychosomatic Medicine
, vol.68
, pp. 427-436
-
-
Enders, C.K.1
-
10
-
-
0000885702
-
The relative performance of full information maximum likelihood estimation for missing data in structural equation models
-
Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8, 430-457.
-
(2001)
Structural Equation Modeling
, vol.8
, pp. 430-457
-
-
Enders, C.K.1
Bandalos, D.L.2
-
11
-
-
0347249765
-
Adding missing-data relevant variables to FIML-based structural equation models
-
Graham, J. W. (2003). Adding missing-data relevant variables to FIML-based structural equation models. Structural Equation Modeling, 10, 80-100.
-
(2003)
Structural Equation Modeling
, vol.10
, pp. 80-100
-
-
Graham, J.W.1
-
12
-
-
60549085055
-
Missing data analysis: Making it work in the real world
-
Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60, 549-576.
-
(2009)
Annual Review of Psychology
, vol.60
, pp. 549-576
-
-
Graham, J.W.1
-
13
-
-
34548451124
-
How many imputations are really needed? Some practical clarifications of multiple imputation theory
-
Graham, J. W., Olchowski, A. E., & Gilreath, T. D. (2007). How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science, 8, 206-213.
-
(2007)
Prevention Science
, vol.8
, pp. 206-213
-
-
Graham, J.W.1
Olchowski, A.E.2
Gilreath, T.D.3
-
14
-
-
0003245614
-
On the performance of multiple imputation for multivariate data with small sample size
-
In R. Hoyle (Ed.), Thousand Oaks, CA: Sage
-
Graham, J. W., & Schafer, J. L. (1999). On the performance of multiple imputation for multivariate data with small sample size. In R. Hoyle (Ed.), Statistical strategies for small sample research (pp. 1-29). Thousand Oaks, CA: Sage.
-
(1999)
Statistical Strategies For Small Sample Research
, pp. 1-29
-
-
Graham, J.W.1
Schafer, J.L.2
-
15
-
-
56549100516
-
Using latent growth models to evaluate longitudinal change
-
In G. R. Hancock & R. O. Mueller (Eds.), Greenwood, CT: Information Age
-
Hancock, G. R., & Lawrence, F. R. (2006). Using latent growth models to evaluate longitudinal change. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (pp. 171-196). Greenwood, CT: Information Age.
-
(2006)
Structural Equation Modeling: A Second Course
, pp. 171-196
-
-
Hancock, G.R.1
Lawrence, F.R.2
-
16
-
-
0035285349
-
Analyzing incomplete political science data: An alternative algorithm for multiple imputation
-
King, G., Honaker, J., Joseph, A., & Scheve, K. (2001). Analyzing incomplete political science data: An alternative algorithm for multiple imputation. American Political Science Review, 95(1), 49-69.
-
(2001)
American Political Science Review
, vol.95
, Issue.1
, pp. 49-69
-
-
King, G.1
Honaker, J.2
Joseph, A.3
Scheve, K.4
-
18
-
-
17444413035
-
Investigating population heterogeneity with factor mixture models
-
Lubke, G. H., & Muthén, B. O. (2005). Investigating population heterogeneity with factor mixture models. Psychological Methods, 10, 21-39.
-
(2005)
Psycho- Logical Methods
, vol.10
, pp. 21-39
-
-
Lubke, G.H.1
Muthén, B.O.2
-
22
-
-
0002031816
-
Latent variable mixture modeling
-
In G. A. Marcoulides & R. E. Schumacker (Eds.), Mahwah, NJ: Lawrence Erlbaum Associates
-
Muthén, B. O. (2001). Latent variable mixture modeling. In G. A. Marcoulides & R. E. Schumacker (Eds.), New developments and techniques in structural equation modeling (pp. 1-33). Mahwah, NJ: Lawrence Erlbaum Associates.
-
(2001)
New De- Velopments and Techniques In Structural Equation Modeling
, pp. 1-33
-
-
Muthén, B.O.1
-
23
-
-
8544268508
-
Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data
-
In D. Kaplan (Ed.), Newbury Park, CA: Sage
-
Muthén, B. O. (2004). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data. In D. Kaplan (Ed.), The Sage handbook of quantitative methodology for the social sciences (pp. 345-368). Newbury Park, CA: Sage.
-
(2004)
The Sage Handbook of Quantitative Methodology For the Social Sciences
, pp. 345-368
-
-
Muthén, B.O.1
-
25
-
-
0017133178
-
Inference and missing data
-
Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592.
-
(1976)
Biometrika
, vol.63
, pp. 581-592
-
-
Rubin, D.B.1
-
29
-
-
85047673373
-
Missing data: Our view of the state of the art
-
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147-177.
-
(2002)
Psychological Methods
, vol.7
, pp. 147-177
-
-
Schafer, J.L.1
Graham, J.W.2
-
30
-
-
0032219074
-
Multiple imputation for multivariate missing-data problems: A data analyst's perspective
-
Schafer, J. L., & Olsen, M. K. (1998). Multiple imputation for multivariate missing-data problems: A data analyst's perspective. Multivariate Behavioral Research, 33, 545-571.
-
(1998)
Multivariate Behavioral Research
, vol.33
, pp. 545-571
-
-
Schafer, J.L.1
Olsen, M.K.2
-
32
-
-
0035748192
-
The use of multiple imputation for the analysis of missing data
-
Sinharay, S., Stern, H. S., & Russell, D. (2001). The use of multiple imputation for the analysis of missing data. Psychological Methods, 6, 317-329.
-
(2001)
Psychological Methods
, vol.6
, pp. 317-329
-
-
Sinharay, S.1
Stern, H.S.2
Russell, D.3
-
33
-
-
41149175664
-
Identifying the correct number of classes in a growth mixture models
-
In G. R. Hancock & K. M. Samuelsen (Eds.), Greenwich, CT: Information Age
-
Tofighi, D., & Enders, C. K. (2007). Identifying the correct number of classes in a growth mixture models. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 317-341). Greenwich, CT: Information Age.
-
(2007)
Advances In Latent Variable Mixture Models
, pp. 317-341
-
-
Tofighi, D.1
Enders, C.K.2
-
34
-
-
69149105188
-
How to impute interactions, squares, and other transformed variables
-
von Hippel, P. T. (2009). How to impute interactions, squares, and other transformed variables. Sociological Methodology, 39, 265-291.
-
(2009)
Sociological Method- Ology
, vol.39
, pp. 265-291
-
-
von Hippel, P.T.1
|