메뉴 건너뛰기




Volumn 18, Issue 1, 2011, Pages 35-54

Multiple imputation strategies for multiple group structural equation models

Author keywords

[No Author keywords available]

Indexed keywords


EID: 78651317614     PISSN: 10705511     EISSN: None     Source Type: Journal    
DOI: 10.1080/10705511.2011.532695     Document Type: Article
Times cited : (66)

References (34)
  • 2
    • 0002914202 scopus 로고    scopus 로고
    • Full information estimation in the presence of incomplete data
    • In G. A. Marcoulides & R. E. Schumacker (Eds.), Mahwah, NJ: Lawrence Erlbaum Associates
    • Arbuckle, J. L. (1996). Full information estimation in the presence of incomplete data. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced structural equation modeling (pp. 243-277). Mahwah, NJ: Lawrence Erlbaum Associates.
    • (1996) Advanced Structural Equation Modeling , pp. 243-277
    • Arbuckle, J.L.1
  • 3
    • 54049109688 scopus 로고    scopus 로고
    • What improves with increased missing data imputations?
    • Bodner, T. E. (2008). What improves with increased missing data imputations? Structural Equation Modeling, 15, 651-675.
    • (2008) Structural Equation Modeling , vol.15 , pp. 651-675
    • Bodner, T.E.1
  • 5
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins, L. M., Schafer, J. L., & Kam, C-M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6, 330-351.
    • (2001) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.-M.3
  • 6
    • 0035756118 scopus 로고    scopus 로고
    • The impact of nonnormality on full information maximum likelihood estimation for structural equation models with missing data
    • Enders, C. K. (2001). The impact of nonnormality on full information maximum likelihood estimation for structural equation models with missing data. Psychological Methods, 6, 352-370.
    • (2001) Psychological Methods , vol.6 , pp. 352-370
    • Enders, C.K.1
  • 7
    • 33645894571 scopus 로고    scopus 로고
    • Analyzing structural equation models with missing data
    • In G. R. Hancock & R. O. Mueller (Eds.), Greenwich, CT: Information Age
    • Enders, C. K. (2006a). Analyzing structural equation models with missing data. In G. R. Hancock & R. O. Mueller (Eds.), A second course in structural equation modeling (pp. 313-344). Greenwich, CT: Information Age.
    • (2006) A Second Course In Structural Equation Modeling , pp. 313-344
    • Enders, C.K.1
  • 8
    • 33746068696 scopus 로고    scopus 로고
    • A primer on the use of modern missing data methods in psychosomatic medicine research
    • Enders, C. K. (2006b). A primer on the use of modern missing data methods in psychosomatic medicine research. Psychosomatic Medicine, 68, 427-436.
    • (2006) Psychosomatic Medicine , vol.68 , pp. 427-436
    • Enders, C.K.1
  • 10
    • 0000885702 scopus 로고    scopus 로고
    • The relative performance of full information maximum likelihood estimation for missing data in structural equation models
    • Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8, 430-457.
    • (2001) Structural Equation Modeling , vol.8 , pp. 430-457
    • Enders, C.K.1    Bandalos, D.L.2
  • 11
    • 0347249765 scopus 로고    scopus 로고
    • Adding missing-data relevant variables to FIML-based structural equation models
    • Graham, J. W. (2003). Adding missing-data relevant variables to FIML-based structural equation models. Structural Equation Modeling, 10, 80-100.
    • (2003) Structural Equation Modeling , vol.10 , pp. 80-100
    • Graham, J.W.1
  • 12
    • 60549085055 scopus 로고    scopus 로고
    • Missing data analysis: Making it work in the real world
    • Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60, 549-576.
    • (2009) Annual Review of Psychology , vol.60 , pp. 549-576
    • Graham, J.W.1
  • 13
    • 34548451124 scopus 로고    scopus 로고
    • How many imputations are really needed? Some practical clarifications of multiple imputation theory
    • Graham, J. W., Olchowski, A. E., & Gilreath, T. D. (2007). How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science, 8, 206-213.
    • (2007) Prevention Science , vol.8 , pp. 206-213
    • Graham, J.W.1    Olchowski, A.E.2    Gilreath, T.D.3
  • 14
    • 0003245614 scopus 로고    scopus 로고
    • On the performance of multiple imputation for multivariate data with small sample size
    • In R. Hoyle (Ed.), Thousand Oaks, CA: Sage
    • Graham, J. W., & Schafer, J. L. (1999). On the performance of multiple imputation for multivariate data with small sample size. In R. Hoyle (Ed.), Statistical strategies for small sample research (pp. 1-29). Thousand Oaks, CA: Sage.
    • (1999) Statistical Strategies For Small Sample Research , pp. 1-29
    • Graham, J.W.1    Schafer, J.L.2
  • 15
    • 56549100516 scopus 로고    scopus 로고
    • Using latent growth models to evaluate longitudinal change
    • In G. R. Hancock & R. O. Mueller (Eds.), Greenwood, CT: Information Age
    • Hancock, G. R., & Lawrence, F. R. (2006). Using latent growth models to evaluate longitudinal change. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (pp. 171-196). Greenwood, CT: Information Age.
    • (2006) Structural Equation Modeling: A Second Course , pp. 171-196
    • Hancock, G.R.1    Lawrence, F.R.2
  • 16
    • 0035285349 scopus 로고    scopus 로고
    • Analyzing incomplete political science data: An alternative algorithm for multiple imputation
    • King, G., Honaker, J., Joseph, A., & Scheve, K. (2001). Analyzing incomplete political science data: An alternative algorithm for multiple imputation. American Political Science Review, 95(1), 49-69.
    • (2001) American Political Science Review , vol.95 , Issue.1 , pp. 49-69
    • King, G.1    Honaker, J.2    Joseph, A.3    Scheve, K.4
  • 18
    • 17444413035 scopus 로고    scopus 로고
    • Investigating population heterogeneity with factor mixture models
    • Lubke, G. H., & Muthén, B. O. (2005). Investigating population heterogeneity with factor mixture models. Psychological Methods, 10, 21-39.
    • (2005) Psycho- Logical Methods , vol.10 , pp. 21-39
    • Lubke, G.H.1    Muthén, B.O.2
  • 22
    • 0002031816 scopus 로고    scopus 로고
    • Latent variable mixture modeling
    • In G. A. Marcoulides & R. E. Schumacker (Eds.), Mahwah, NJ: Lawrence Erlbaum Associates
    • Muthén, B. O. (2001). Latent variable mixture modeling. In G. A. Marcoulides & R. E. Schumacker (Eds.), New developments and techniques in structural equation modeling (pp. 1-33). Mahwah, NJ: Lawrence Erlbaum Associates.
    • (2001) New De- Velopments and Techniques In Structural Equation Modeling , pp. 1-33
    • Muthén, B.O.1
  • 23
    • 8544268508 scopus 로고    scopus 로고
    • Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data
    • In D. Kaplan (Ed.), Newbury Park, CA: Sage
    • Muthén, B. O. (2004). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data. In D. Kaplan (Ed.), The Sage handbook of quantitative methodology for the social sciences (pp. 345-368). Newbury Park, CA: Sage.
    • (2004) The Sage Handbook of Quantitative Methodology For the Social Sciences , pp. 345-368
    • Muthén, B.O.1
  • 25
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 29
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147-177.
    • (2002) Psychological Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 30
    • 0032219074 scopus 로고    scopus 로고
    • Multiple imputation for multivariate missing-data problems: A data analyst's perspective
    • Schafer, J. L., & Olsen, M. K. (1998). Multiple imputation for multivariate missing-data problems: A data analyst's perspective. Multivariate Behavioral Research, 33, 545-571.
    • (1998) Multivariate Behavioral Research , vol.33 , pp. 545-571
    • Schafer, J.L.1    Olsen, M.K.2
  • 32
    • 0035748192 scopus 로고    scopus 로고
    • The use of multiple imputation for the analysis of missing data
    • Sinharay, S., Stern, H. S., & Russell, D. (2001). The use of multiple imputation for the analysis of missing data. Psychological Methods, 6, 317-329.
    • (2001) Psychological Methods , vol.6 , pp. 317-329
    • Sinharay, S.1    Stern, H.S.2    Russell, D.3
  • 33
    • 41149175664 scopus 로고    scopus 로고
    • Identifying the correct number of classes in a growth mixture models
    • In G. R. Hancock & K. M. Samuelsen (Eds.), Greenwich, CT: Information Age
    • Tofighi, D., & Enders, C. K. (2007). Identifying the correct number of classes in a growth mixture models. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 317-341). Greenwich, CT: Information Age.
    • (2007) Advances In Latent Variable Mixture Models , pp. 317-341
    • Tofighi, D.1    Enders, C.K.2
  • 34
    • 69149105188 scopus 로고    scopus 로고
    • How to impute interactions, squares, and other transformed variables
    • von Hippel, P. T. (2009). How to impute interactions, squares, and other transformed variables. Sociological Methodology, 39, 265-291.
    • (2009) Sociological Method- Ology , vol.39 , pp. 265-291
    • von Hippel, P.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.