메뉴 건너뛰기




Volumn 12, Issue , 2012, Pages

Auxiliary variables in multiple imputation in regression with missing X: A warning against including too many in small sample research

Author keywords

Auxiliary variables; Multiple imputation; Simulation study; Small and medium size samples

Indexed keywords

ARTICLE; COMPUTER SIMULATION; HUMAN; METHODOLOGY; REGRESSION ANALYSIS; SAMPLE SIZE; STATISTICAL ANALYSIS; STATISTICAL MODEL;

EID: 84870333136     PISSN: None     EISSN: 14712288     Source Type: Journal    
DOI: 10.1186/1471-2288-12-184     Document Type: Article
Times cited : (130)

References (47)
  • 2
    • 0030539070 scopus 로고    scopus 로고
    • Multiple imputations after 18 plus years
    • Multiple imputations after 18 plus years. Rubin DB, JASA 1996 91 473 489
    • (1996) JASA , vol.91 , pp. 473-489
    • Rubin, D.B.1
  • 3
    • 78649486195 scopus 로고    scopus 로고
    • The use and reporting of multiple imputation in medical research - A review
    • 10.1111/j.1365-2796.2010.02274.x 20831627
    • The use and reporting of multiple imputation in medical research-a review. Mackinnon A, J Intern Med 2010 268 586 593 10.1111/j.1365-2796.2010. 02274.x 20831627
    • (2010) J Intern Med , vol.268 , pp. 586-593
    • MacKinnon, A.1
  • 4
    • 84863601626 scopus 로고    scopus 로고
    • A review of the reporting and handling of missing data in cohort studies with repeated assessment of exposure measures
    • 10.1186/1471-2288-12-96 22784200
    • A review of the reporting and handling of missing data in cohort studies with repeated assessment of exposure measures. Karahalios A, Baglietto L, Carlin JB, English DR, Simpson JA, BMC Med Res Methodol 2012 12 96 10.1186/1471-2288-12-96 22784200
    • (2012) BMC Med Res Methodol , vol.12 , pp. 96
    • Karahalios, A.1    Baglietto, L.2    Carlin, J.B.3    English, D.R.4    Simpson, J.A.5
  • 6
    • 84950455641 scopus 로고
    • Regression with missing X's: A review
    • Regression with missing X's: a review. Little RJ, J Am Stat Assoc 1992 87 1227 1237
    • (1992) J Am Stat Assoc , vol.87 , pp. 1227-1237
    • Little, R.J.1
  • 7
    • 78649551872 scopus 로고    scopus 로고
    • Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values
    • 10.1002/sim.3944 20842622
    • Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values. White IR, Carlin JB, Stat Med 2010 29 2920 2931 10.1002/sim.3944 20842622
    • (2010) Stat Med , vol.29 , pp. 2920-2931
    • White, I.R.1    Carlin, J.B.2
  • 8
    • 34347372013 scopus 로고    scopus 로고
    • A comparison of imputation techniques for handling missing predictor values in a risk model with a binary outcome
    • 10.1177/0962280206074466 17621472
    • A comparison of imputation techniques for handling missing predictor values in a risk model with a binary outcome. Ambler G, Omar RZ, Royston P, Stat Methods Med Res 2007 16 277 298 10.1177/0962280206074466 17621472
    • (2007) Stat Methods Med Res , vol.16 , pp. 277-298
    • Ambler, G.1    Omar, R.Z.2    Royston, P.3
  • 9
    • 80052845770 scopus 로고    scopus 로고
    • Imputation of missing values of tumour stage in population-based cancer registration
    • 10.1186/1471-2288-11-129 21929796
    • Imputation of missing values of tumour stage in population-based cancer registration. Eisemann N, Waldmann A, Katalinic A, BMC Med Res Methodol 2011 11 129 142 10.1186/1471-2288-11-129 21929796
    • (2011) BMC Med Res Methodol , vol.11 , pp. 129-142
    • Eisemann, N.1    Waldmann, A.2    Katalinic, A.3
  • 10
    • 84857990004 scopus 로고    scopus 로고
    • Multiple imputation for estimating hazard ratios and predictive abilities in case-cohort surveys
    • 10.1186/1471-2288-12-24 22405090
    • Multiple imputation for estimating hazard ratios and predictive abilities in case-cohort surveys. Marti H, Carcaillon L, Chavance M, BMC Med Res Methodol 2012 12 24 10.1186/1471-2288-12-24 22405090
    • (2012) BMC Med Res Methodol , vol.12 , pp. 24
    • Marti, H.1    Carcaillon, L.2    Chavance, M.3
  • 11
    • 77956454369 scopus 로고    scopus 로고
    • Multiple imputation for estimation of an occurrence rate in cohorts with attrition and discrete follow-up time points: A simulation study
    • 10.1186/1471-2288-10-79 20815883
    • Multiple imputation for estimation of an occurrence rate in cohorts with attrition and discrete follow-up time points: a simulation study. Soullier N, de La Rochebrochard E, Bouyer J, BMC Med Res Methodol 2010 10 79 86 10.1186/1471-2288-10-79 20815883
    • (2010) BMC Med Res Methodol , vol.10 , pp. 79-86
    • Soullier, N.1    De La Rochebrochard, E.2    Bouyer, J.3
  • 12
    • 78650958270 scopus 로고    scopus 로고
    • Multiple imputation of missing dual-energy X-ray absorptiometry data in the national health and nutrition examination survey
    • 10.1002/sim.4080 21213343
    • Multiple imputation of missing dual-energy X-ray absorptiometry data in the national health and nutrition examination survey. Schenker N, Borrud LG, Burt VL, Curtin LR, Flegal KM, Hughes J, Johnson CL, Looker AC, Mirel L, Stat Med 2011 30 260 276 10.1002/sim.4080 21213343
    • (2011) Stat Med , vol.30 , pp. 260-276
    • Schenker, N.1    Borrud, L.G.2    Burt, V.L.3    Curtin, L.R.4    Flegal, K.M.5    Hughes, J.6    Johnson, C.L.7    Looker, A.C.8    Mirel, L.9
  • 13
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • 11778676
    • A comparison of inclusive and restrictive strategies in modern missing data procedures. Collins LM, Schafer JL, Kam C-M, Psychol Methods 2001 6 330 351 11778676
    • (2001) Psychol Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.-M.3
  • 14
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • 12090408
    • Missing data: our view of the state of the art. Schafer JL, Graham JW, Psychol Methods 2002 7 147 177 12090408
    • (2002) Psychol Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 16
    • 70449834993 scopus 로고    scopus 로고
    • The effect of auxiliary variables and multiple imputation on parameter estimation in confirmatory factor analysis
    • 10.1177/0013164409332225
    • The effect of auxiliary variables and multiple imputation on parameter estimation in confirmatory factor analysis. Hoo JE, Educ Psychol Meas 2009 69 929 947 10.1177/0013164409332225
    • (2009) Educ Psychol Meas , vol.69 , pp. 929-947
    • Hoo, J.E.1
  • 17
    • 78651256743 scopus 로고    scopus 로고
    • Multiple imputation using chained equations: Issues and guidance for practice
    • 10.1002/sim.4067 21225900
    • Multiple imputation using chained equations: Issues and guidance for practice. White IR, Royston P, Wood AM, Stat Med 2011 30 377 399 10.1002/sim.4067 21225900
    • (2011) Stat Med , vol.30 , pp. 377-399
    • White, I.R.1    Royston, P.2    Wood, A.M.3
  • 18
    • 84865754036 scopus 로고    scopus 로고
    • Analyzing repeated data collected by mobile phones and frequent text messages. An example of low back pain measured weekly for 18 weeks
    • 10.1186/1471-2288-12-105 22824413
    • Analyzing repeated data collected by mobile phones and frequent text messages. An example of low back pain measured weekly for 18 weeks. Axen I, Bodin L, Kongsted A, Wedderkopp N, Jensen I, Bergstrom G, BMC Med Res Methodol 2012 12 105 10.1186/1471-2288-12-105 22824413
    • (2012) BMC Med Res Methodol , vol.12 , pp. 105
    • Axen, I.1    Bodin, L.2    Kongsted, A.3    Wedderkopp, N.4    Jensen, I.5    Bergstrom, G.6
  • 20
    • 0034339545 scopus 로고    scopus 로고
    • Multiple imputation for missing data: A cautionary tale
    • 10.1177/0049124100028003003
    • Multiple imputation for missing data: a cautionary tale. Allison PD, Sociol Methods Res 2000 28 301 309 10.1177/0049124100028003003
    • (2000) Sociol Methods Res , vol.28 , pp. 301-309
    • Allison, P.D.1
  • 21
    • 23044525261 scopus 로고    scopus 로고
    • Multiple imputation in practice: Comparison of software pachages for regression models with missing variables
    • 10.1198/000313001317098266
    • Multiple imputation in practice: Comparison of software pachages for regression models with missing variables. Horton NJ, Lipsitz JR, Am Stat 2001 55 244 254 10.1198/000313001317098266
    • (2001) Am Stat , vol.55 , pp. 244-254
    • Horton, N.J.1    Lipsitz, J.R.2
  • 22
    • 34548451124 scopus 로고    scopus 로고
    • How many imputations are really needed? Some practical clarifications of multiple imputation theory
    • 10.1007/s11121-007-0070-9 17549635
    • How many imputations are really needed? Some practical clarifications of multiple imputation theory. Graham JW, Olchowski AE, Gilreath TD, Prev Sci 2007 8 206 213 10.1007/s11121-007-0070-9 17549635
    • (2007) Prev Sci , vol.8 , pp. 206-213
    • Graham, J.W.1    Olchowski, A.E.2    Gilreath, T.D.3
  • 23
    • 84858308626 scopus 로고    scopus 로고
    • Release 12. College Station, TX: StataCorp
    • StataCorp, Stata Statistical Software Release 12. College Station, TX: StataCorp 2011
    • (2011) Stata Statistical Software
  • 24
    • 0033616909 scopus 로고    scopus 로고
    • Multiple imputation of missing blood pressure covariates in survival analysis
    • 10.1002/(SICI)1097-0258(19990330)18:6<681: AID-SIM71>3.0.CO;2-R 10204197
    • Multiple imputation of missing blood pressure covariates in survival analysis. van Buuren S, Boshuizen HC, Knook DL, Stat Med 1999 18 681 694 10.1002/(SICI)1097-0258(19990330)18:6<681::AID-SIM71>3.0.CO;2-R 10204197
    • (1999) Stat Med , vol.18 , pp. 681-694
    • Van Buuren, S.1    Boshuizen, H.C.2    Knook, D.L.3
  • 25
    • 79953732420 scopus 로고    scopus 로고
    • Mice: Multivariate imputation by chained equations in R
    • http://www.jstatsoft.org/v2045/i12003
    • Mice: multivariate imputation by chained equations in R. Groothuis-Oudshoorn K, van Buuren S, J Stat Software 2011 45 http://www.jstatsoft.org/v2045/i12003
    • (2011) J Stat Software , vol.45
    • Groothuis-Oudshoorn, K.1    Van Buuren, S.2
  • 26
    • 78650635637 scopus 로고    scopus 로고
    • Comparison of imputation methods for handling missing covariate data when fitting a Cox proportional hazards model: A resampling study
    • 10.1186/1471-2288-10-112 21194416
    • Comparison of imputation methods for handling missing covariate data when fitting a Cox proportional hazards model: a resampling study. Marshall A, Altman DG, Holder RL, BMC Med Res Methodol 2010 10 112 10.1186/1471-2288-10-112 21194416
    • (2010) BMC Med Res Methodol , vol.10 , pp. 112
    • Marshall, A.1    Altman, D.G.2    Holder, R.L.3
  • 27
    • 77249126457 scopus 로고    scopus 로고
    • Comparison of techniques for handling missing covariate data within prognostic modelling studies: A simulation study
    • 10.1186/1471-2288-10-7 20085642
    • Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study. Marshall A, Altman DG, Royston P, Holder RL, BMC Med Res Methodol 2010 10 7 10.1186/1471-2288-10-7 20085642
    • (2010) BMC Med Res Methodol , vol.10 , pp. 7
    • Marshall, A.1    Altman, D.G.2    Royston, P.3    Holder, R.L.4
  • 28
    • 84862179893 scopus 로고    scopus 로고
    • Recovery of information from multiple imputation: A simulation study
    • Recovery of information from multiple imputation: a simulation study. Lee KJD, Carlin JBP, Emerg Themes Epidemiol 2012 9 3 http://www.ete-online.com/ content/pdf/1742-7622-1749-1743.pdf 10.1186/1742-7622-9-3 22695083
    • (2012) Emerg Themes Epidemiol , vol.9 , pp. 3
    • Lee, K.J.D.1    Carlin, J.B.P.2
  • 29
    • 84863304598 scopus 로고    scopus 로고
    • R: A language and environment for statistical computing
    • R Development Core Team City: R Foundation for Statistical Computing
    • R: a language and environment for statistical computing. R Development Core Team, Book R: a language and environment for statistical computing City: R Foundation for Statistical Computing 2011
    • (2011) Book R: A Language and Environment for Statistical Computing
  • 33
    • 77954332545 scopus 로고    scopus 로고
    • What to do about missing values in time serious cross section data
    • What to do about missing values in time serious cross section data. Honaker J, King G, American Journal of Political Science 2010 2 561 581
    • (2010) American Journal of Political Science , vol.2 , pp. 561-581
    • Honaker, J.1    King, G.2
  • 34
    • 62749129394 scopus 로고    scopus 로고
    • Multiple imputation methods for treatment noncompliance and nonresponse in randomized clinical trials
    • 10.1111/j.1541-0420.2008.01023.x 18397338
    • Multiple imputation methods for treatment noncompliance and nonresponse in randomized clinical trials. Taylor LM, Zhou XH, Biometrics 2009 65 88 95 10.1111/j.1541-0420.2008.01023.x 18397338
    • (2009) Biometrics , vol.65 , pp. 88-95
    • Taylor, L.M.1    Zhou, X.H.2
  • 35
    • 84872145891 scopus 로고    scopus 로고
    • ice: a program for multiple imputation
    • ice: a program for multiple imputation, http://www.ats.ucla.edu/stat/ stata/library/ice.html
  • 36
    • 84872149557 scopus 로고    scopus 로고
    • SPSS Inc Chicago, IL
    • SPSS Inc, SPSS V20 Chicago, IL 2012
    • (2012) SPSS V20
  • 37
    • 77949607685 scopus 로고    scopus 로고
    • The symptom-check-list-27-plus (SCL-27-plus): A modern conceptualization of a traditional screening instrument
    • The symptom-check-list-27-plus (SCL-27-plus): a modern conceptualization of a traditional screening instrument. Hardt J, German Medical Science-Psychosoc Med 2008 5 http://www.egms.de/en/journals/psm/2008-2005/psm000053.shtml
    • (2008) German Medical Science - Psychosoc Med , vol.5
    • Hardt, J.1
  • 38
    • 84872167723 scopus 로고    scopus 로고
    • Der Stark QoL- ein etwas anderer Fragebogen zur Lebensqualität. Poster zur 60. Arbeitstagungstagung der DKPM und 17. Jahrestagung der DGPM, Mainz, 18.-21. März
    • Der Stark QoL- ein etwas anderer Fragebogen zur Lebensqualität. Poster zur 60. Arbeitstagungstagung der DKPM und 17. Jahrestagung der DGPM, Mainz, 18.-21. März. Hardt J, Stark H, Psychol Med 2009 20
    • (2009) Psychol Med , vol.20
    • Hardt, J.1    Stark, H.2
  • 39
    • 79751516328 scopus 로고    scopus 로고
    • A short screening instrument for mental health problems: The Symptom Checklist-27 (SCL-27) in Poland and Germany
    • 10.3109/13651501.2010.523791 22122688
    • A short screening instrument for mental health problems: The Symptom Checklist-27 (SCL-27) in Poland and Germany. Hardt J, Dragan M, Kappis B, Int J Psychiatry Clin Pract 2011 15 42 49 10.3109/13651501.2010.523791 22122688
    • (2011) Int J Psychiatry Clin Pract , vol.15 , pp. 42-49
    • Hardt, J.1    Dragan, M.2    Kappis, B.3
  • 40
    • 2642541763 scopus 로고    scopus 로고
    • Using an em covariance matrix to estimate structural equation models with missing data: Choosing an adjusted sample size to improve the accuracy of inferences
    • 10.1207/S15328007SEM1101-1
    • Using an EM covariance matrix to estimate structural equation models with missing data: choosing an adjusted sample size to improve the accuracy of inferences. Enders CK, Peugh JL, Structural Equation Modeling 2004 11 1 19 10.1207/S15328007SEM1101-1
    • (2004) Structural Equation Modeling , vol.11 , pp. 1-19
    • Enders, C.K.1    Peugh, J.L.2
  • 41
    • 84858734318 scopus 로고    scopus 로고
    • Alternative analyses for handling incomplete follow-up in the intention-to-treat analysis: The randomized controlled trial of balloon kyphoplasty versus non-surgical care for vertebral compression fracture (FREE)
    • 10.1186/1471-2288-12-35 22443312
    • Alternative analyses for handling incomplete follow-up in the intention-to-treat analysis: the randomized controlled trial of balloon kyphoplasty versus non-surgical care for vertebral compression fracture (FREE). Ranstam J, Turkiewicz A, Boonen S, Van Meirhaeghe J, Bastian L, Wardlaw D, BMC Med Res Methodol 2012 12 35 47 10.1186/1471-2288-12-35 22443312
    • (2012) BMC Med Res Methodol , vol.12 , pp. 35-47
    • Ranstam, J.1    Turkiewicz, A.2    Boonen, S.3    Van Meirhaeghe, J.4    Bastian, L.5    Wardlaw, D.6
  • 43
    • 0030474271 scopus 로고    scopus 로고
    • A simulation study of the number of events per variable in logistic regression analsis
    • 10.1016/S0895-4356(96)00236-3 8970487
    • A simulation study of the number of events per variable in logistic regression analsis. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR, J Clin Epidemiol 1996 49 1373 1379 10.1016/S0895-4356(96)00236-3 8970487
    • (1996) J Clin Epidemiol , vol.49 , pp. 1373-1379
    • Peduzzi, P.1    Concato, J.2    Kemper, E.3    Holford, T.R.4    Feinstein, A.R.5
  • 44
    • 80054995011 scopus 로고    scopus 로고
    • Performance of logistic regression modeling: Beyond the number of events per variable, the role of data structure
    • 10.1016/j.jclinepi.2010.11.012 21411281
    • Performance of logistic regression modeling: beyond the number of events per variable, the role of data structure. Courvoisier DS, Combescure C, Agoritsas T, Gayet-Ageron A, Perneger TV, J Clin Epidemiol 2011 64 993 1000 10.1016/j.jclinepi.2010.11.012 21411281
    • (2011) J Clin Epidemiol , vol.64 , pp. 993-1000
    • Courvoisier, D.S.1    Combescure, C.2    Agoritsas, T.3    Gayet-Ageron, A.4    Perneger, T.V.5
  • 45
    • 70549084402 scopus 로고    scopus 로고
    • Impact of non-normal random effects on inference by multiple imputation: A simulation assessment
    • 10.1016/j.csda.2009.01.016
    • Impact of non-normal random effects on inference by multiple imputation: a simulation assessment. Yucel RM, Demirtas H, Comput Stat Data An 2010 54 790 801 10.1016/j.csda.2009.01.016
    • (2010) Comput Stat Data An , vol.54 , pp. 790-801
    • Yucel, R.M.1    Demirtas, H.2
  • 46
    • 84867917862 scopus 로고    scopus 로고
    • Multiple imputation of missing covariates with non-linear effects and interactions: An evaluation of statistical methods
    • 10.1186/1471-2288-12-46 22489953
    • Multiple imputation of missing covariates with non-linear effects and interactions: an evaluation of statistical methods. Seaman SR, Bartlett JW, White IR, BMC Med Res Methodol 2012 12 46 10.1186/1471-2288-12-46 22489953
    • (2012) BMC Med Res Methodol , vol.12 , pp. 46
    • Seaman, S.R.1    Bartlett, J.W.2    White, I.R.3
  • 47
    • 77952422361 scopus 로고    scopus 로고
    • Unpredictable bias when using the missing indicator method or complete case analysis for missing confounder values: An empirical example
    • 10.1016/j.jclinepi.2009.08.028 20346625
    • Unpredictable bias when using the missing indicator method or complete case analysis for missing confounder values: an empirical example. Knol MJ, Janssen KJ, Donders AR, Egberts AC, Heerdink ER, Grobbee DE, Moons KG, Geerlings MI, J Clin Epidemiol 2010 63 728 736 10.1016/j.jclinepi.2009.08.028 20346625
    • (2010) J Clin Epidemiol , vol.63 , pp. 728-736
    • Knol, M.J.1    Janssen, K.J.2    Donders, A.R.3    Egberts, A.C.4    Heerdink, E.R.5    Grobbee, D.E.6    Moons, K.G.7    Geerlings, M.I.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.